找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deterministic Chaos in Infinite Quantum Systems; Fabio Benatti Book 1993 Springer-Verlag Berlin Heidelberg 1993 Entropie.Ergodentheorie.In

[复制链接]
楼主: cerebellum
发表于 2025-3-23 13:15:56 | 显示全部楼层
Si Si Mar Win,Hnin Mya Aye,Than New AungQuantum systems are commonly described by means of some (separable) Hilbert space ℍ and of linear operators on it playing the role of . The set .(ℍ) comprising all bounded linear operators is an algebra with respect to the natural operator product.
发表于 2025-3-23 16:38:46 | 显示全部楼层
发表于 2025-3-23 19:28:11 | 显示全部楼层
Introduction,The purpose of this volume is to give a detailed account of a series of results concerning some ergodic questions of quantum mechanics which have been addressed in the past six years following the formulation of a generalized Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring.
发表于 2025-3-24 00:24:56 | 显示全部楼层
Algebraic Approach to Classical Ergodic Theory,Motivated by Section 2.3.1 we can think of a classical dynamical system in terms of an abstract Abelian . algebra . (with identity î) and of a reversible evolution defined by the ℤ-action of a *automorphism Θ : .→..
发表于 2025-3-24 05:18:10 | 显示全部楼层
Infinite Quantum Systems,Quantum systems are commonly described by means of some (separable) Hilbert space ℍ and of linear operators on it playing the role of . The set .(ℍ) comprising all bounded linear operators is an algebra with respect to the natural operator product.
发表于 2025-3-24 09:33:10 | 显示全部楼层
Appendix,A linear space . (ℂ as field of coefficients) equipped with a multiplication law that sends each couple of elements ., . into another element . . in an associative and distributive way.
发表于 2025-3-24 11:59:07 | 显示全部楼层
https://doi.org/10.1007/978-3-642-84999-2Entropie; Ergodentheorie; Infinite Quantum System; chaos; deterministic chaos; entropy; ergodic theory; qua
发表于 2025-3-24 17:14:10 | 显示全部楼层
发表于 2025-3-24 19:21:19 | 显示全部楼层
Trieste Notes in Physicshttp://image.papertrans.cn/d/image/269336.jpg
发表于 2025-3-25 02:51:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-19 22:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表