找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deformations of Surface Singularities; András Némethi,ágnes Szilárd Book 2013 Springer-Verlag Berlin Heidelberg 2013 algebraic geometry.lo

[复制链接]
楼主: hector
发表于 2025-3-25 03:54:31 | 显示全部楼层
发表于 2025-3-25 11:28:30 | 显示全部楼层
Negative Deformations of Toric Singularities that are Smooth in Codimension Two,ormation of the associated toric variety .(σ) that is built from the deformation parameters of multidegree ...The base space is (the germ of) an affine scheme M̅ that reflects certain possibilities of splitting . := σ [. = 1] into Minkowski summands.
发表于 2025-3-25 14:12:11 | 显示全部楼层
Smoothings of Singularities and Symplectic Topology, smoothings. We also review the construction of such smoothings and show that in many cases these smoothings are unique up to symplectic deformation. In addition, we describe a method for finding differential topological descriptions (more precisely, Kirby diagrams) of the smoothings and illustrate
发表于 2025-3-25 16:47:32 | 显示全部楼层
The Versal Deformation of Cyclic Quotient Singularities,educed components the equations are determined by certain systems of dots in a triangle. The equations of the versal deformation itself are governed by a different combinatorial structure, involving rooted trees.
发表于 2025-3-25 22:33:34 | 显示全部楼层
发表于 2025-3-26 03:50:24 | 显示全部楼层
发表于 2025-3-26 05:06:59 | 显示全部楼层
发表于 2025-3-26 11:50:40 | 显示全部楼层
发表于 2025-3-26 15:16:16 | 显示全部楼层
Tree Singularities: Limits, Series and Stability,th factor with the “base space of the limit”. The simplest tree singularities turn out to have already a very rich deformation theory, that is related to problems in plane geometry. From this relation, a very clear topological picture of the Milnor fibre over the different components can be obtained.
发表于 2025-3-26 17:42:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 08:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表