找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning in Solar Astronomy; Long Xu,Yihua Yan,Xin Huang Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l

[复制链接]
楼主: vitamin-D
发表于 2025-3-25 04:39:01 | 显示全部楼层
Introduction,tional neural network has been verified most efficient for processing image. To process time series input, like video, recurrent neural network, e.g., long short-term memory (LSTM), was developed, which was widely known for forecasting the future, e.g., event occurrence, physical parameter predictio
发表于 2025-3-25 09:56:37 | 显示全部楼层
发表于 2025-3-25 14:54:23 | 显示全部楼层
Deep Learning in Solar Astronomy978-981-19-2746-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-25 17:53:11 | 显示全部楼层
发表于 2025-3-25 22:53:47 | 显示全部楼层
978-981-19-2745-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
发表于 2025-3-26 02:35:35 | 显示全部楼层
https://doi.org/10.1007/978-3-662-37014-8 techniques. It has been particularly successful in computer vision, machine translation, speech recognition and natural language processing. Modern astronomy concerns a big data challenge owning to high-resolution, high-precision and high-cadence telescopes. The big data presents a great challenge
发表于 2025-3-26 04:47:11 | 显示全部楼层
发表于 2025-3-26 08:57:18 | 显示全部楼层
发表于 2025-3-26 14:19:43 | 显示全部楼层
https://doi.org/10.1007/978-3-662-01274-1ellite continuously record high-resolution and high-cadence full-disk solar images. These images are used for solar activity forecasting and statistical analysis. Usually, it is required to mine key information from full-disk images firstly. Then, over extracted information, one can establish classi
发表于 2025-3-26 19:46:12 | 显示全部楼层
https://doi.org/10.1007/978-3-642-53067-8ty of image generation which is more challenging than classification. In this chapter, several applications of deep learning in solar image enhancement, reconstruction and processing are presented, including image deconvolution of solar radioheliograph, desaturation of solar imaging, generating magn
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 01:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表