找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning for Unmanned Systems; Anis Koubaa,Ahmad Taher Azar Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusiv

[复制链接]
楼主: 去是公开
发表于 2025-3-28 15:47:33 | 显示全部楼层
Marken, Variablen, Querverweise,easibility of the proposed models, together with the energy and cost savings attained. Results demonstrate that Deep Q-Learning based algorithms represent a viable and economically convenient solution for enabling energy self-sustainability of mobile networks grouped in micro-grids.
发表于 2025-3-28 21:04:52 | 显示全部楼层
发表于 2025-3-28 23:38:39 | 显示全部楼层
发表于 2025-3-29 03:11:11 | 显示全部楼层
发表于 2025-3-29 07:38:54 | 显示全部楼层
Deep Learning for Unmanned Systems978-3-030-77939-9Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-29 14:37:49 | 显示全部楼层
发表于 2025-3-29 17:46:59 | 显示全部楼层
发表于 2025-3-29 20:27:42 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-2802-8ous systems with the ability to automatically learn underlying features in data at different levels of abstractions, to build complex concepts out of simpler ones and to get better with experience without being explicitly programmed. This book chapter provides a comprehensive review on the applicati
发表于 2025-3-30 01:53:01 | 显示全部楼层
Desk Reference for Neurosciencetill depends on a remote human controller with robust wireless links to perform several of these applications. The lack of autonomy restricts the domains of application and tasks for which a UAS can be deployed. This is even more relevant in tactical and rescue scenarios where the UAS needs to opera
发表于 2025-3-30 08:00:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 02:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表