找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[复制链接]
楼主: 生长变吼叫
发表于 2025-3-28 18:24:21 | 显示全部楼层
https://doi.org/10.1007/978-1-349-21601-7resolution patches at different cross sections of the spatial-temporal data and reconstructs high-quality CT volumes. We assess the performance of the network concerning image restoration at different tube currents and multiple resolution scales. The results indicate the ability of our network in re
发表于 2025-3-28 19:43:52 | 显示全部楼层
https://doi.org/10.1007/0-306-48631-8ibility of important structural details after aggressive denoising. This paper introduces a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transport theory,
发表于 2025-3-28 23:36:17 | 显示全部楼层
发表于 2025-3-29 06:32:53 | 显示全部楼层
发表于 2025-3-29 08:19:07 | 显示全部楼层
发表于 2025-3-29 14:30:36 | 显示全部楼层
发表于 2025-3-29 16:00:52 | 显示全部楼层
Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextualomputer-aided screening, diagnosis, and quantitative assessment. Yet, pancreas is a challenging abdominal organ to segment due to the high inter-patient anatomical variability in both shape and volume metrics. Recently, convolutional neural networks (CNN) have demonstrated promising performance on a
发表于 2025-3-29 20:23:15 | 显示全部楼层
Deep Learning for Muscle Pathology Image Analysis critical to guide effective patient treatment since each subtype requires distinct therapy. Image analysis of hematoxylin and eosin (H&E)-stained whole-slide specimens of muscle biopsies are considered as a gold standard for effective IM diagnosis. Accurate segmentation of perimysium plays an impor
发表于 2025-3-30 01:41:09 | 显示全部楼层
2D-Based Coarse-to-Fine Approaches for Small Target Segmentation in Abdominal CT Scansgans (e.g., .) or neoplasms (e.g., .) is sometimes below satisfaction, arguably because deep networks are easily disrupted by the complex and variable background regions which occupy a large fraction of the input volume. In this chapter, we propose two coarse-to-fine mechanisms which use prediction
发表于 2025-3-30 04:07:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 08:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表