找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[复制链接]
楼主: 生长变吼叫
发表于 2025-3-25 05:37:58 | 显示全部楼层
发表于 2025-3-25 11:03:45 | 显示全部楼层
发表于 2025-3-25 12:22:09 | 显示全部楼层
发表于 2025-3-25 19:14:26 | 显示全部楼层
发表于 2025-3-25 23:44:04 | 显示全部楼层
Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-Fine Framework and Its Adversarial Example last one contain healthy and pathological pancreases, respectively, and achieve the current state of the art in terms of Dice-Sørensen Coefficient (DSC) on all of them. Especially, on the NIH pancreas dataset, we outperform the previous best by an average of over ., and the worst case is improved
发表于 2025-3-26 02:29:11 | 显示全部楼层
Glaucoma Detection Based on Deep Learning Network in Fundus Imageided network, local disc region stream, and disc polar transformation stream. The DENet produces the glaucoma detection result from the image directly without segmentation. Finally, we compare two deep learning methods with other related methods on several glaucoma detection datasets.
发表于 2025-3-26 08:18:16 | 显示全部楼层
发表于 2025-3-26 10:12:09 | 显示全部楼层
Anisotropic Hybrid Network for Cross-Dimension Transferable Feature Learning in 3D Medical Imageso 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for within-slice information while naturally exploiting between-slice information for more effective modeling. We show the effectiveness of the 3D AH-Net on two example medical image analysis applications
发表于 2025-3-26 13:37:07 | 显示全部楼层
Tumor Growth Prediction Using Convolutional Networksn. We then present a two-stream ConvNets which directly model and learn the two fundamental processes of tumor growth, i.e., cell invasion and mass effect, and predict the subsequent involvement regions of a tumor. Experiments on a longitudinal pancreatic tumor data set show that both approaches sub
发表于 2025-3-26 20:08:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 20:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表