找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Techniques for Music Generation; Jean-Pierre Briot,Gaëtan Hadjeres,François-David P Book 2020 Springer Nature Switzerland AG

[复制链接]
查看: 23875|回复: 41
发表于 2025-3-21 19:03:18 | 显示全部楼层 |阅读模式
书目名称Deep Learning Techniques for Music Generation
编辑Jean-Pierre Briot,Gaëtan Hadjeres,François-David P
视频video
概述Authors‘ analysis based on five dimensions: objective, representation, architecture, challenge, and strategy.Important application of deep learning, for AI researchers and composers.Research was condu
丛书名称Computational Synthesis and Creative Systems
图书封面Titlebook: Deep Learning Techniques for Music Generation;  Jean-Pierre Briot,Gaëtan Hadjeres,François-David P Book 2020 Springer Nature Switzerland AG
描述.This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems,
出版日期Book 2020
关键词Music Generation; Machine Learning; Deep Learning; Neural Networks; Representation; Artificial Intelligen
版次1
doihttps://doi.org/10.1007/978-3-319-70163-9
isbn_ebook978-3-319-70163-9Series ISSN 2509-6575 Series E-ISSN 2509-6583
issn_series 2509-6575
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Deep Learning Techniques for Music Generation影响因子(影响力)




书目名称Deep Learning Techniques for Music Generation影响因子(影响力)学科排名




书目名称Deep Learning Techniques for Music Generation网络公开度




书目名称Deep Learning Techniques for Music Generation网络公开度学科排名




书目名称Deep Learning Techniques for Music Generation被引频次




书目名称Deep Learning Techniques for Music Generation被引频次学科排名




书目名称Deep Learning Techniques for Music Generation年度引用




书目名称Deep Learning Techniques for Music Generation年度引用学科排名




书目名称Deep Learning Techniques for Music Generation读者反馈




书目名称Deep Learning Techniques for Music Generation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:14:49 | 显示全部楼层
发表于 2025-3-22 01:31:46 | 显示全部楼层
Book 2020y); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems,
发表于 2025-3-22 06:54:17 | 显示全部楼层
发表于 2025-3-22 09:45:39 | 显示全部楼层
Manifesto of Design of UnfinishedIn our analysis, we consider five main . to characterize different ways of applying deep learning techniques to generate musical content. This typology is aimed at helping the analysis of the various perspectives (and elements) leading to the design of different deep learning-based music generation systems.
发表于 2025-3-22 15:14:28 | 显示全部楼层
发表于 2025-3-22 18:07:36 | 显示全部楼层
Urban Remnants Become Setting for EventsThe second dimension of our analysis, the ., is about the way the musical content is represented. The choice of representation and its encoding is tightly connected to the configuration of the input and the output of the architecture, i.e. the number of input and output variables as well as their corresponding types.
发表于 2025-3-22 22:58:43 | 显示全部楼层
发表于 2025-3-23 01:41:10 | 显示全部楼层
Rationale und differenzierte DesignbewertungWe are now reaching the core of this book. This chapter will analyze in depth how to apply the architectures presented in Chapter 5 to learn and generate music. We will first start with a naive, straightforward strategy, using the basic prediction task of a neural network to generate an accompaniment for a melody.
发表于 2025-3-23 08:00:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 15:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表