找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020

[复制链接]
楼主: 万能
发表于 2025-3-23 13:45:48 | 显示全部楼层
Memristors: Properties, Models, Materials. The modeling of memristors for very large scale simulations requires to accurately capture process variations and other non-idealities from real devices for ensuring the validity of deep neural network architecture designs with memristors.
发表于 2025-3-23 16:24:31 | 显示全部楼层
发表于 2025-3-23 21:50:03 | 显示全部楼层
Memristive LSTM Architecturesn in analog hardware. The implementation realizes the standard version of LSTM architecture. Other architecture variations can be easily constructed by rearranging, adding, and deleting the existing analog circuit parts; and adding extra crossbar rows.
发表于 2025-3-24 01:59:44 | 显示全部楼层
HTM Theoryrts: HTM Spatial Pooler (SP) and HTM Temporal Memory (TM). The HTM SP performs the encoding of the input data and produces sparse distributed representation (SDR) of the input pattern useful for visual data processing and classification tasks. The HTM TM detects the temporal changes in the input data and performs prediction making.
发表于 2025-3-24 04:56:15 | 显示全部楼层
Book 2020first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep
发表于 2025-3-24 08:55:50 | 显示全部楼层
Getting Started with TensorFlow Deep Learningo construct an artificial neural network. We briefly introduce the codes for building a recurrent neural network and convolutional neural network for example of MNIST based handwritten digits classification problem.
发表于 2025-3-24 11:51:02 | 显示全部楼层
发表于 2025-3-24 18:39:57 | 显示全部楼层
Patcharaporn Duangputtan,Nobuo Mishima. The modeling of memristors for very large scale simulations requires to accurately capture process variations and other non-idealities from real devices for ensuring the validity of deep neural network architecture designs with memristors.
发表于 2025-3-24 21:46:03 | 显示全部楼层
发表于 2025-3-25 00:54:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 19:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表