找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020

[复制链接]
查看: 7558|回复: 57
发表于 2025-3-21 17:21:06 | 显示全部楼层 |阅读模式
书目名称Deep Learning Classifiers with Memristive Networks
副标题Theory and Applicati
编辑Alex Pappachen James
视频video
概述Offers an introduction to deep neural network architectures.Describes in detail different kind of neuro-memristive systems, circuits and models.Shows how to implement different kind of neural networks
丛书名称Modeling and Optimization in Science and Technologies
图书封面Titlebook: Deep Learning Classifiers with Memristive Networks; Theory and Applicati Alex Pappachen James Book 2020 Springer Nature Switzerland AG 2020
描述.This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors..
出版日期Book 2020
关键词Neuro-memristive Computing; Memristive Crossbar Arrays; Memristor Models; Memristor Materials; Deep Lear
版次1
doihttps://doi.org/10.1007/978-3-030-14524-8
isbn_ebook978-3-030-14524-8Series ISSN 2196-7326 Series E-ISSN 2196-7334
issn_series 2196-7326
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Deep Learning Classifiers with Memristive Networks影响因子(影响力)




书目名称Deep Learning Classifiers with Memristive Networks影响因子(影响力)学科排名




书目名称Deep Learning Classifiers with Memristive Networks网络公开度




书目名称Deep Learning Classifiers with Memristive Networks网络公开度学科排名




书目名称Deep Learning Classifiers with Memristive Networks被引频次




书目名称Deep Learning Classifiers with Memristive Networks被引频次学科排名




书目名称Deep Learning Classifiers with Memristive Networks年度引用




书目名称Deep Learning Classifiers with Memristive Networks年度引用学科排名




书目名称Deep Learning Classifiers with Memristive Networks读者反馈




书目名称Deep Learning Classifiers with Memristive Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:37:27 | 显示全部楼层
发表于 2025-3-22 02:01:18 | 显示全部楼层
发表于 2025-3-22 05:30:31 | 显示全部楼层
发表于 2025-3-22 10:22:38 | 显示全部楼层
Introduction to Neuro-Memristive Systemsions that extend the capabilities of exiting computing hardware. The full potential of neuro-memristive systems is yet to be completely realised and could provide ways to develop higher level of socially engineered machine cognition.
发表于 2025-3-22 14:40:08 | 显示全部楼层
发表于 2025-3-22 20:11:19 | 显示全部楼层
Multi-level Memristive Memory for Neural Networksand architecture level issues force memory engineers to approach memristive memory design in different ways. In this chapter device-level problems: restricted number of resistance states, stochastic switching and architecture level problem: sneak paths will be discussed, and their state of the art solutions will be presented.
发表于 2025-3-23 00:45:28 | 显示全部楼层
2196-7326 els.Shows how to implement different kind of neural networks.This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor device
发表于 2025-3-23 04:32:51 | 显示全部楼层
发表于 2025-3-23 05:50:25 | 显示全部楼层
Design for Six Sigma + LeanToolsetlows extending the capabilities of threshold logic circuits. In this chapter, we review the hardware designs of memristive threshold logic (MTL) circuits that are inspired by the principle of neuron firing inside the brain. Variety of threshold architectures, their limitations and possible field of application are discussed.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 16:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表