找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[复制链接]
楼主: 日月等
发表于 2025-3-28 16:08:41 | 显示全部楼层
Enabling Temporal Reasoning for Fact Statements: A Web-Based Approachrate their risk estimation into the process of probability computation. Our experiments on real data shows that the proposed approach can achieve considerable improvements in performance over 2 state-of-the-art alternatives, and the proposed risk reduction technique can effectively improve validity time reasoning’s precision.
发表于 2025-3-28 19:03:01 | 显示全部楼层
发表于 2025-3-28 23:08:54 | 显示全部楼层
发表于 2025-3-29 06:18:53 | 显示全部楼层
发表于 2025-3-29 09:34:14 | 显示全部楼层
https://doi.org/10.1007/978-3-662-55612-2features through multi-type pooling. Experiments show that the CNN with multi-convolution and multi-type pooling (CNN-MCMP) obtains better performance on text classification compared with both the shallow machine-learning models and other CNN architectures.
发表于 2025-3-29 12:29:36 | 显示全部楼层
https://doi.org/10.1007/978-3-662-55612-2sed hash strategy to ensure both the partition balancing and less partitioning time. Especially, existing trajectory data are not required to be repartitioned when new data arrive. Extensive experiments on three real data sets demonstrated that the performance of the proposed technique outperformed other partitioning techniques.
发表于 2025-3-29 19:30:12 | 显示全部楼层
Constructing Separable Objective Functionsser-based collaborative filtering algorithm (CFC), and validates the validity of the algorithm in the prototype of the proposed system. The experimental results show that the recommendation algorithms can significantly improve accuracy of the recommendation.
发表于 2025-3-29 20:26:58 | 显示全部楼层
发表于 2025-3-30 02:11:46 | 显示全部楼层
https://doi.org/10.1007/978-1-349-25337-1ted SPARQL engine (e.g. TriAD) in an adaptive way and evaluate FedQL on a real-world dataset. The experimental results show that FedQL is efficient and effective in processing RDF stream and relational data in a federal way.
发表于 2025-3-30 04:49:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 12:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表