找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[复制链接]
楼主: 日月等
发表于 2025-3-25 03:18:59 | 显示全部楼层
发表于 2025-3-25 08:36:10 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/d/image/263397.jpg
发表于 2025-3-25 11:49:50 | 显示全部楼层
https://doi.org/10.1007/978-3-662-55612-2 for databases. Extensive experiments are designed to conduct both performance testing and analyzing under different schemas. The experimental results show that a reasonable configuration can contribute a good database performance, which provides factual basis for optimizing highly concurrent applic
发表于 2025-3-25 18:12:21 | 显示全部楼层
Andranik S. Tangian,Josef GruberIs directly. In this paper, we propose a collaborative inferring framework to analyze the actually visited POI categories from users’ historical trajectory data. Through modeling relationships among the user, time and POI category, the tensor decomposition method can effectively complement the missi
发表于 2025-3-25 21:30:05 | 显示全部楼层
发表于 2025-3-26 03:48:53 | 显示全部楼层
发表于 2025-3-26 04:19:10 | 显示全部楼层
发表于 2025-3-26 09:17:57 | 显示全部楼层
Tensor Factorization Based POI Category InferenceIs directly. In this paper, we propose a collaborative inferring framework to analyze the actually visited POI categories from users’ historical trajectory data. Through modeling relationships among the user, time and POI category, the tensor decomposition method can effectively complement the missi
发表于 2025-3-26 15:56:16 | 显示全部楼层
发表于 2025-3-26 19:01:08 | 显示全部楼层
Developing Knowledge-Based Systems Using Data Mining Techniques for Advising Secondary School Studens preprocessed for missing values, outliers, noisy and errors. Then the model is experimented using decision tree (j48) and rule induction (PART) algorithms. In this study as compared to j48, the PART unpruned decision list algorithm has 98.003% predictive performance. Thus, the knowledge discovered
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 08:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表