找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data-driven Retailing; A Non-technical Prac Louis-Philippe Kerkhove Book 2022 The Editor(s) (if applicable) and The Author(s), under exclus

[复制链接]
楼主: 补给线
发表于 2025-3-23 13:08:42 | 显示全部楼层
Anticipate When Customers Will Do Somethinga medical context to model patient survival. These models can be perfectly repurposed to optimize the timing of a retailers messaging, to coincide with moment when this messaging has the greatest impact.
发表于 2025-3-23 15:52:54 | 显示全部楼层
Louis-Philippe KerkhoveOffers tools to manage data-centric projects and ask the right questions.Provides user-friendly practical knowledge on data management.Covers theory and practice of data analysis and management
发表于 2025-3-23 20:30:26 | 显示全部楼层
发表于 2025-3-24 02:14:06 | 显示全部楼层
发表于 2025-3-24 03:03:11 | 显示全部楼层
发表于 2025-3-24 06:47:08 | 显示全部楼层
O. Shakuntala,G. Raghavendra,S. K. AcharyaThis chapter discusses the philosophy behind algorithmic marketing. This is an umbrella term for techniques that aspire to make marketing efforts more personalized and effective. The meaning of customer centricity and its implications for algorithmic marketing are discussed at length.
发表于 2025-3-24 12:11:56 | 显示全部楼层
Andreas Daberkow,Marcus Ehlert,Dominik KaiseDespite being one of the first data use cases quoted in a retail context, customer segmentation is often done badly. This chapter discusses an approach that creates customer segments that are behaviorally different, and show different customer value potential. The resulting segments are easier to translate into specific value-increasing actions.
发表于 2025-3-24 18:06:22 | 显示全部楼层
发表于 2025-3-24 22:12:06 | 显示全部楼层
Understanding Demand and ElasticityDemand curves and elasticity models are the bread and butter of basic economics courses. In spite of this, the simplified models that are thought translate poorly to the day-to-day situation of a retailer. This chapter provides a brief recapitulation of the basics, as well as some approaches that are manageable in practice.
发表于 2025-3-25 02:39:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 01:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表