找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data-Enabled Analytics; DEA for Big Data Joe Zhu,Vincent Charles Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
楼主: charity
发表于 2025-3-27 00:49:12 | 显示全部楼层
978-3-030-75164-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-27 02:59:57 | 显示全部楼层
Joe Zhu,Vincent CharlesExplores novel uses of Data Envelopment Analysis and Big Data.Introduces DEA as a data mining tool, under the big data umbrella.Exams DEA models beyond their present scope and mine new insights for be
发表于 2025-3-27 08:17:05 | 显示全部楼层
发表于 2025-3-27 09:42:22 | 显示全部楼层
发表于 2025-3-27 16:46:44 | 显示全部楼层
发表于 2025-3-27 19:29:39 | 显示全部楼层
The Estimation of Productive Efficiency Through Machine Learning Techniques: Efficiency Analysis Tr to production theory and engineering. Many parametric and nonparametric approaches have been introduced in the last forty years for estimating production frontiers given a data sample. However, few of these methodologies are based on machine learning techniques, despite being a growing field of res
发表于 2025-3-27 22:29:59 | 显示全部楼层
Hybrid Data Science and Reinforcement Learning in Data Envelopment Analysis,e functional form identification of the production frontier and the RL derives the optimal resource reallocation policy which guides the productivity improvement. In fact, both DS and RL techniques complement efficiency analysis. Emphasizes on planning over evaluation, we use data generating process
发表于 2025-3-28 06:09:32 | 显示全部楼层
发表于 2025-3-28 08:27:11 | 显示全部楼层
Parallel Processing and Large-Scale Datasets in Data Envelopment Analysis,ved once for each DMU. In data enabled analytics, when a large-scale dataset is evaluated, the elapsed time to apply a DEA model substantially increases. Parallel processing allows splitting the task into several parts so each part can simultaneously be executed on different processors. This study e
发表于 2025-3-28 11:18:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 12:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表