找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data and Applications Security and Privacy XXXVII; 37th Annual IFIP WG Vijayalakshmi Atluri,Anna Lisa Ferrara Conference proceedings 2023

[复制链接]
查看: 16385|回复: 54
发表于 2025-3-21 19:52:53 | 显示全部楼层 |阅读模式
书目名称Data and Applications Security and Privacy XXXVII
副标题37th Annual IFIP WG
编辑Vijayalakshmi Atluri,Anna Lisa Ferrara
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Data and Applications Security and Privacy XXXVII; 37th Annual IFIP WG  Vijayalakshmi Atluri,Anna Lisa Ferrara Conference proceedings 2023
描述This volume LNCS 13942 constitutes the refereed proceedings of the 37th Annual IFIP WG 11.3 Conference, DBSec 2023, in Sophia-Antipolis, France, July 19–21, 2023.  .The 19 full papers presented together with 5 short papers were carefully reviewed and selected from 56 submissions. The conference focuses on secure data sharing; access control and vulnerability assessment; machine learning; and mobile applications..
出版日期Conference proceedings 2023
关键词access control; artificial intelligence; authentication; computer crime; computer networks; privacy; anony
版次1
doihttps://doi.org/10.1007/978-3-031-37586-6
isbn_softcover978-3-031-37585-9
isbn_ebook978-3-031-37586-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightIFIP International Federation for Information Processing 2023
The information of publication is updating

书目名称Data and Applications Security and Privacy XXXVII影响因子(影响力)




书目名称Data and Applications Security and Privacy XXXVII影响因子(影响力)学科排名




书目名称Data and Applications Security and Privacy XXXVII网络公开度




书目名称Data and Applications Security and Privacy XXXVII网络公开度学科排名




书目名称Data and Applications Security and Privacy XXXVII被引频次




书目名称Data and Applications Security and Privacy XXXVII被引频次学科排名




书目名称Data and Applications Security and Privacy XXXVII年度引用




书目名称Data and Applications Security and Privacy XXXVII年度引用学科排名




书目名称Data and Applications Security and Privacy XXXVII读者反馈




书目名称Data and Applications Security and Privacy XXXVII读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:18:19 | 显示全部楼层
https://doi.org/10.1007/978-3-642-85098-1ork that supports organizations in implementing and performing ACP maintenance. Third, we present a maintenance case study in which we implemented maintenance capabilities for a real-world ACP dataset that allowed us to significantly improve its quality.
发表于 2025-3-22 01:25:20 | 显示全部楼层
Differentially Private Streaming Data Release Under Temporal Correlations via Post-processingl and transform it into nonlinear constrained programming. Our experiments on synthetic datasets show that the proposed approach significantly improves the utility and accuracy of differentially private data by nearly a hundred times in terms of mean square error when a strict privacy budget is given.
发表于 2025-3-22 06:25:45 | 显示全部楼层
Maintain High-Quality Access Control Policies: An Academic and Practice-Driven Approachork that supports organizations in implementing and performing ACP maintenance. Third, we present a maintenance case study in which we implemented maintenance capabilities for a real-world ACP dataset that allowed us to significantly improve its quality.
发表于 2025-3-22 09:38:26 | 显示全部楼层
0302-9743 nce, July 19–21, 2023.  .The 19 full papers presented together with 5 short papers were carefully reviewed and selected from 56 submissions. The conference focuses on secure data sharing; access control and vulnerability assessment; machine learning; and mobile applications..978-3-031-37585-9978-3-0
发表于 2025-3-22 16:28:14 | 显示全部楼层
发表于 2025-3-22 18:25:21 | 显示全部楼层
发表于 2025-3-23 00:51:30 | 显示全部楼层
(Local) Differential Privacy has NO Disparate Impact on Fairness With LDP, users can perturb their data on their devices before sending it out for analysis. However, as the collection of multiple sensitive information becomes more prevalent across various industries, collecting a single sensitive attribute under LDP may not be sufficient. Correlated attributes i
发表于 2025-3-23 03:23:36 | 显示全部楼层
发表于 2025-3-23 06:34:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 10:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表