找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science in Engineering, Volume 9; Proceedings of the 4 Ramin Madarshahian,Francois Hemez Conference proceedings 2022 The Society for E

[复制链接]
查看: 21098|回复: 59
发表于 2025-3-21 18:25:01 | 显示全部楼层 |阅读模式
书目名称Data Science in Engineering, Volume 9
副标题Proceedings of the 4
编辑Ramin Madarshahian,Francois Hemez
视频video
丛书名称Conference Proceedings of the Society for Experimental Mechanics Series
图书封面Titlebook: Data Science in Engineering, Volume 9; Proceedings of the 4 Ramin Madarshahian,Francois Hemez Conference proceedings 2022 The Society for E
描述.Data Science in Engineering, Volume 9:  Proceedings of the 40.th. IMAC,. .A Conference and Exposition on Structural Dynamics, 2022, .the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering.  The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:.Novel Data-driven Analysis Methods.Deep Learning Gaussian Process Analysis.Real-time Video-based Analysis.Applications to Nonlinear Dynamics and Damage Detection.High-rate Structural Monitoring and Prognostics.
出版日期Conference proceedings 2022
关键词data science; Structural Dynamics; Dynamic Substructures; Structural Engineering; Conference Proceedings
版次1
doihttps://doi.org/10.1007/978-3-031-04122-8
isbn_softcover978-3-031-04124-2
isbn_ebook978-3-031-04122-8Series ISSN 2191-5644 Series E-ISSN 2191-5652
issn_series 2191-5644
copyrightThe Society for Experimental Mechanics, Inc. 2022
The information of publication is updating

书目名称Data Science in Engineering, Volume 9影响因子(影响力)




书目名称Data Science in Engineering, Volume 9影响因子(影响力)学科排名




书目名称Data Science in Engineering, Volume 9网络公开度




书目名称Data Science in Engineering, Volume 9网络公开度学科排名




书目名称Data Science in Engineering, Volume 9被引频次




书目名称Data Science in Engineering, Volume 9被引频次学科排名




书目名称Data Science in Engineering, Volume 9年度引用




书目名称Data Science in Engineering, Volume 9年度引用学科排名




书目名称Data Science in Engineering, Volume 9读者反馈




书目名称Data Science in Engineering, Volume 9读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:58:41 | 显示全部楼层
发表于 2025-3-22 00:59:09 | 显示全部楼层
Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm, combine spike-based computing and machine-learning-based neural networks that emulate the operation of the human brain. Spiking neural networks have the ability to be easily integrated into neuromorphic hardware, such as Intel’s . chip. The advantages of neuromorphic hardware are its high-speed com
发表于 2025-3-22 06:40:26 | 显示全部楼层
发表于 2025-3-22 08:44:21 | 显示全部楼层
Transmittance Anomalies for Model-Based Damage Detection with Finite Element-Generated Data and Deee on damage detection and identification tasks. The main advantage of finite element (FE)-generated data is the substitution of costly and sometimes impossible experiments to acquire data for different healthy and damaged states. On the other hand, numerically generated data is strongly limited on t
发表于 2025-3-22 14:48:46 | 显示全部楼层
Machine Learning-Based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faata is used to train a convolutional neural network (CNN) which performs damage identification on two experimental damaged states. The multibody dynamics (MBD) model of a two-stage helical gear transmission is first developed and used to model the healthy and the damaged state of the problem. Data i
发表于 2025-3-22 20:42:30 | 显示全部楼层
Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Moda structure. The recent trends show that there is an increasing interest in the use of machine learning (ML) for SHM systems that rely on the experimentally measured data or artificially collected data to properly train the ML model for classification. The proposed method however is taking another a
发表于 2025-3-22 23:53:50 | 显示全部楼层
发表于 2025-3-23 04:25:38 | 显示全部楼层
发表于 2025-3-23 08:32:39 | 显示全部楼层
Data-Driven Structural Identification for Turbomachinery Blisks,ece of material with uniform sector-to-sector material properties and geometry. However, due to manufacturing tolerances, blisks contain sector-to-sector perturbations in material properties and geometry known as mistuning, which can result in increased response amplitudes due to energy localization
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 00:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表