找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science and Productivity Analytics; Vincent Charles,Juan Aparicio,Joe Zhu Book 2020 Springer Nature Switzerland AG 2020 Productivity

[复制链接]
楼主: fibrous-plaque
发表于 2025-3-28 18:11:12 | 显示全部楼层
Data Envelopment Analysis and Big Data: Revisit with a Faster Method,ork provides the fastest available technique in the DEA literature to deal with big data. It is well known that as the number of decision-making units (DMUs) or the number of inputs–outputs increases, the size of DEA linear programming problems increases; and thus, the elapsed time to evaluate the p
发表于 2025-3-28 18:46:33 | 显示全部楼层
,Data Envelopment Analysis (DEA): Algorithms, Computations, and Geometry,have a broad impact within and beyond the field. Algorithmic, computational, and geometric results in DEA allow us to solve larger problems faster; they also contribute to various other fields including computational geometry, statistics, and machine learning. This chapter reviews these topics from
发表于 2025-3-29 01:41:28 | 显示全部楼层
发表于 2025-3-29 03:07:55 | 显示全部楼层
发表于 2025-3-29 08:55:52 | 显示全部楼层
Data Envelopment Analysis and Non-parametric Analysis,on the non-parametric derivation of the Production Possibility Set (PPS), on the multiplicity of DEA models and on how to handle different types of situations, namely, undesirable outputs, ratio variables, multi-period data, negative data non-discretionary variables, and integer variables.
发表于 2025-3-29 13:04:58 | 显示全部楼层
发表于 2025-3-29 16:40:03 | 显示全部楼层
发表于 2025-3-29 21:56:12 | 显示全部楼层
发表于 2025-3-30 01:41:20 | 显示全部楼层
发表于 2025-3-30 04:36:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 23:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表