找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science and Big Data Analytics; Proceedings of IDBA Durgesh Mishra,Xin She Yang,Dharm Singh Jat Conference proceedings 2024 The Edito

[复制链接]
楼主: MOURN
发表于 2025-3-30 10:43:21 | 显示全部楼层
发表于 2025-3-30 15:34:30 | 显示全部楼层
发表于 2025-3-30 19:44:12 | 显示全部楼层
Performance Evaluation of LiCi-2 Ultra-lightweight Block Cipher, of eavesdropping because these devices might exchange sensitive information. An emerging field called lightweight encryption can protect these gadgets’ data from eavesdroppers. LiCi-2 is described as an uncertified, extremely resource-efficient cipher in literature. This study’s goal is to assess t
发表于 2025-3-30 23:46:20 | 显示全部楼层
A Comparative Study: Fog and Cloud Computing,is, the criteria and traits of fog computing and clustered fog computing are expressed quantitatively. As the number of connected devices grows, cloud-based platforms that offer real-time, low latency services prove to be a problem. In a suggested method study of clustering in fog nodes using IoT or
发表于 2025-3-31 04:22:27 | 显示全部楼层
Soil Moisture Prediction Using Machine Learning Techniques,ictions, environmental monitoring and water shortage. In this work, support vector regression and decision tree techniques have been applied on the given datasets. The data used in this experiment is classified into two different parts: soil moisture data and meteorological data. The data is collect
发表于 2025-3-31 06:48:38 | 显示全部楼层
发表于 2025-3-31 10:03:42 | 显示全部楼层
发表于 2025-3-31 16:56:00 | 显示全部楼层
Predicting Software Faults Using Machine Learning Techniques: An Empirical Study,opment life cycle. Deep learning (DL), machine learning (ML), and all forms of data mining are used in the process of predicting software faults. First, we provide a brief introduction to the fundamentals of ML-based software defect prediction. The objective of software fault prediction is to identi
发表于 2025-3-31 17:33:08 | 显示全部楼层
发表于 2025-3-31 21:48:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 18:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表