找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science Solutions with Python; Fast and Scalable Mo Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Big Data Analytics.Machine

[复制链接]
查看: 55340|回复: 44
发表于 2025-3-21 17:52:03 | 显示全部楼层 |阅读模式
书目名称Data Science Solutions with Python
副标题Fast and Scalable Mo
编辑Tshepo Chris Nokeri
视频video
概述Explains techniques for integrating frameworks for high model performance.Presents a hybrid approach for rapid prototyping models, deploying and scaling them.Bridges the gap between machine and deep l
图书封面Titlebook: Data Science Solutions with Python; Fast and Scalable Mo Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Big Data Analytics.Machine
描述Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process. .The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras.. .The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Pr
出版日期Book 2022
关键词Big Data Analytics; Machine Learning; Deep Learning; Python; Python Frameworks; Keras; Scikit-learn; PySpar
版次1
doihttps://doi.org/10.1007/978-1-4842-7762-1
isbn_softcover978-1-4842-7761-4
isbn_ebook978-1-4842-7762-1
copyrightTshepo Chris Nokeri 2022
The information of publication is updating

书目名称Data Science Solutions with Python影响因子(影响力)




书目名称Data Science Solutions with Python影响因子(影响力)学科排名




书目名称Data Science Solutions with Python网络公开度




书目名称Data Science Solutions with Python网络公开度学科排名




书目名称Data Science Solutions with Python被引频次




书目名称Data Science Solutions with Python被引频次学科排名




书目名称Data Science Solutions with Python年度引用




书目名称Data Science Solutions with Python年度引用学科排名




书目名称Data Science Solutions with Python读者反馈




书目名称Data Science Solutions with Python读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:15:34 | 显示全部楼层
oduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Pr978-1-4842-7761-4978-1-4842-7762-1
发表于 2025-3-22 01:57:06 | 显示全部楼层
and scaling them.Bridges the gap between machine and deep lApply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine lea
发表于 2025-3-22 05:08:26 | 显示全部楼层
Leszek J. Chmielewski,Arkadiusz Orłowskiected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks. It also covers a deep learning framework called Keras. It concludes by discussing effective ways of setting up and managing these frameworks.
发表于 2025-3-22 09:45:16 | 显示全部楼层
Big Data, Machine Learning, and Deep Learning Frameworks,ected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks. It also covers a deep learning framework called Keras. It concludes by discussing effective ways of setting up and managing these frameworks.
发表于 2025-3-22 16:39:02 | 显示全部楼层
发表于 2025-3-22 19:25:10 | 显示全部楼层
发表于 2025-3-22 22:28:02 | 显示全部楼层
http://image.papertrans.cn/d/image/263069.jpg
发表于 2025-3-23 04:13:18 | 显示全部楼层
发表于 2025-3-23 06:10:29 | 显示全部楼层
https://doi.org/10.1007/978-3-031-00978-5This introductory chapter explains the ordinary least-squares method and executes it with the main Python frameworks (i.e., Scikit-Learn, Spark MLlib, and H2O). It begins by explaining the underlying concept behind the method.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 06:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表