找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science Solutions with Python; Fast and Scalable Mo Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Big Data Analytics.Machine

[复制链接]
楼主: 天真无邪
发表于 2025-3-25 06:39:19 | 显示全部楼层
Nonlinear Modeling With Scikit-Learn, PySpark, and H2O,This chapter executes and appraises a nonlinear method for binary classification (called .) using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Spark MLlib, and H2O). To begin, it clarifies the underlying concept behind the sigmoid function.
发表于 2025-3-25 10:27:41 | 显示全部楼层
发表于 2025-3-25 15:30:43 | 显示全部楼层
Neural Networks with Scikit-Learn, Keras, and H2O,This chapter executes and assesses nonlinear neural networks to address binary classification using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Keras, and H2O).
发表于 2025-3-25 17:15:58 | 显示全部楼层
Cluster Analysis with Scikit-Learn, PySpark, and H2O,This chapter explains the . cluster method by implementing a diverse set of Python frameworks (i.e., Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method apportions values to clusters.
发表于 2025-3-25 21:14:17 | 显示全部楼层
Principal Component Analysis with Scikit-Learn, PySpark, and H2O,This chapter executes a simple dimension reducer (a principal component method) by implementing a diverse set of Python frameworks (Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method computes components.
发表于 2025-3-26 01:44:15 | 显示全部楼层
发表于 2025-3-26 04:44:45 | 显示全部楼层
Leszek J. Chmielewski,Arkadiusz Orłowski(ML) and deep learning (DL) frameworks useful for building scalable applications. After reading this chapter, you will understand how big data is collected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks.
发表于 2025-3-26 10:33:11 | 显示全部楼层
发表于 2025-3-26 13:49:28 | 显示全部楼层
978-1-4842-7761-4Tshepo Chris Nokeri 2022
发表于 2025-3-26 17:43:51 | 显示全部楼层
Big Data, Machine Learning, and Deep Learning Frameworks,(ML) and deep learning (DL) frameworks useful for building scalable applications. After reading this chapter, you will understand how big data is collected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 06:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表