找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Mining, Rough Sets and Granular Computing; Tsau Young Lin,Yiyu Y. Yao,Lotfi A. Zadeh Book 2002 Springer-Verlag Berlin Heidelberg 2002

[复制链接]
查看: 45438|回复: 56
发表于 2025-3-21 18:31:22 | 显示全部楼层 |阅读模式
书目名称Data Mining, Rough Sets and Granular Computing
编辑Tsau Young Lin,Yiyu Y. Yao,Lotfi A. Zadeh
视频video
概述The book integrates data mining, rough sets and granular computing.Includes supplementary material:
丛书名称Studies in Fuzziness and Soft Computing
图书封面Titlebook: Data Mining, Rough Sets and Granular Computing;  Tsau Young Lin,Yiyu Y. Yao,Lotfi A. Zadeh Book 2002 Springer-Verlag Berlin Heidelberg 2002
描述During the past few years, data mining has grown rapidly in visibility and importance within information processing and decision analysis. This is par­ ticularly true in the realm of e-commerce, where data mining is moving from a "nice-to-have" to a "must-have" status. In a different though related context, a new computing methodology called granular computing is emerging as a powerful tool for the conception, analysis and design of information/intelligent systems. In essence, data mining deals with summarization of information which is resident in large data sets, while granular computing plays a key role in the summarization process by draw­ ing together points (objects) which are related through similarity, proximity or functionality. In this perspective, granular computing has a position of centrality in data mining. Another methodology which has high relevance to data mining and plays a central role in this volume is that of rough set theory. Basically, rough set theory may be viewed as a branch of granular computing. However, its applications to data mining have predated that of granular computing.
出版日期Book 2002
关键词Extension; Scoring; approximation; calculus; classification; data analysis; data mining; fuzzy sets; knowled
版次1
doihttps://doi.org/10.1007/978-3-7908-1791-1
isbn_softcover978-3-7908-2508-4
isbn_ebook978-3-7908-1791-1Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

书目名称Data Mining, Rough Sets and Granular Computing影响因子(影响力)




书目名称Data Mining, Rough Sets and Granular Computing影响因子(影响力)学科排名




书目名称Data Mining, Rough Sets and Granular Computing网络公开度




书目名称Data Mining, Rough Sets and Granular Computing网络公开度学科排名




书目名称Data Mining, Rough Sets and Granular Computing被引频次




书目名称Data Mining, Rough Sets and Granular Computing被引频次学科排名




书目名称Data Mining, Rough Sets and Granular Computing年度引用




书目名称Data Mining, Rough Sets and Granular Computing年度引用学科排名




书目名称Data Mining, Rough Sets and Granular Computing读者反馈




书目名称Data Mining, Rough Sets and Granular Computing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:53 | 显示全部楼层
发表于 2025-3-22 03:49:09 | 显示全部楼层
发表于 2025-3-22 08:06:30 | 显示全部楼层
发表于 2025-3-22 11:42:42 | 显示全部楼层
发表于 2025-3-22 12:55:16 | 显示全部楼层
A Query-Driven Interesting Rule Discovery Using Associations and Spanning Operationsth interesting and related to user goals. According to the degree of relevancy to a user goal, a database can be divided into the five views: from the view positively related to the user goal to the view unrelated. To each such view, our novel technique of data mining can be applied. The union and j
发表于 2025-3-22 19:42:29 | 显示全部楼层
An Interactive Visualization System for Mining Association Rulesg association rules is visualized, which consists of six steps: preparing the raw data set, visualizing the original data set, cleaning the data, discretizing numerical attributes, and mining and visualizing the discovered association rules. The architecture of the AViz system is presented and each
发表于 2025-3-23 01:11:29 | 显示全部楼层
发表于 2025-3-23 05:11:14 | 显示全部楼层
发表于 2025-3-23 07:49:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-30 23:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表