找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Mining Techniques in Sensor Networks; Summarization, Inter Annalisa Appice,Anna Ciampi,Donato Malerba Book 2014 The Author(s) 2014 Ano

[复制链接]
楼主: 手或脚
发表于 2025-3-23 13:34:25 | 显示全部楼层
发表于 2025-3-23 14:27:54 | 显示全部楼层
https://doi.org/10.1007/978-3-319-99127-6In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming models, which can be embedded in intelligent sensor platforms and used to mine real-time data for a variety of analytical insights.
发表于 2025-3-23 22:02:20 | 显示全部楼层
发表于 2025-3-23 23:21:09 | 显示全部楼层
Sensor Data Surveillance,egy to continuously maintain . trend clusters across a sensor network. The analysis of trend clusters, which are discovered at the consecutive sliding windows, is useful to look for possible changes in the data, as well as to produce forecasts of the future.
发表于 2025-3-24 04:20:50 | 显示全部楼层
Sensor Networks and Data Streams: Basics,In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming models, which can be embedded in intelligent sensor platforms and used to mine real-time data for a variety of analytical insights.
发表于 2025-3-24 08:40:11 | 显示全部楼层
发表于 2025-3-24 13:33:32 | 显示全部楼层
Annalisa Appice,Anna Ciampi,Donato MalerbaIntroduces the trend cluster, a recently defined spatio-temporal pattern, and its use in summarizing, interpolating and identifying anomalies in sensor networks.Illustrates the application of trend cl
发表于 2025-3-24 16:04:24 | 显示全部楼层
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/d/image/262910.jpg
发表于 2025-3-24 20:13:09 | 显示全部楼层
Data Mining Techniques in Sensor Networks978-1-4471-5454-9Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-25 01:18:17 | 显示全部楼层
https://doi.org/10.1007/978-3-319-99127-6 environmental phenomena that can be detected, monitored, and reacted to. Another important aspect is the real-time data delivery of novel platforms. In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming mo
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 11:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表