找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Mining Techniques in Sensor Networks; Summarization, Inter Annalisa Appice,Anna Ciampi,Donato Malerba Book 2014 The Author(s) 2014 Ano

[复制链接]
查看: 10421|回复: 35
发表于 2025-3-21 16:41:02 | 显示全部楼层 |阅读模式
书目名称Data Mining Techniques in Sensor Networks
副标题Summarization, Inter
编辑Annalisa Appice,Anna Ciampi,Donato Malerba
视频video
概述Introduces the trend cluster, a recently defined spatio-temporal pattern, and its use in summarizing, interpolating and identifying anomalies in sensor networks.Illustrates the application of trend cl
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Data Mining Techniques in Sensor Networks; Summarization, Inter Annalisa Appice,Anna Ciampi,Donato Malerba Book 2014 The Author(s) 2014 Ano
描述Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology.
出版日期Book 2014
关键词Anomaly Detection; Clustering; Data Mining; Interpolation; Sensor Data; Spatio-Temporal Data Mining; Strea
版次1
doihttps://doi.org/10.1007/978-1-4471-5454-9
isbn_softcover978-1-4471-5453-2
isbn_ebook978-1-4471-5454-9Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2014
The information of publication is updating

书目名称Data Mining Techniques in Sensor Networks影响因子(影响力)




书目名称Data Mining Techniques in Sensor Networks影响因子(影响力)学科排名




书目名称Data Mining Techniques in Sensor Networks网络公开度




书目名称Data Mining Techniques in Sensor Networks网络公开度学科排名




书目名称Data Mining Techniques in Sensor Networks被引频次




书目名称Data Mining Techniques in Sensor Networks被引频次学科排名




书目名称Data Mining Techniques in Sensor Networks年度引用




书目名称Data Mining Techniques in Sensor Networks年度引用学科排名




书目名称Data Mining Techniques in Sensor Networks读者反馈




书目名称Data Mining Techniques in Sensor Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:36:31 | 显示全部楼层
发表于 2025-3-22 02:25:28 | 显示全部楼层
发表于 2025-3-22 08:30:57 | 显示全部楼层
Sensor Data Surveillance,continuous surveillance of this unbounded amount of georeferenced data. Trend cluster discovery, as a spatiotemporal aggregate operator, may play a crucial role in the surveillance process of the sensor data. We describe a computation-preserving algorithm, which employs an incremental learning strat
发表于 2025-3-22 10:09:05 | 显示全部楼层
Book 2014twork. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology.
发表于 2025-3-22 15:16:12 | 显示全部楼层
发表于 2025-3-22 20:31:17 | 显示全部楼层
Volker Stich,Gerhard Gudergan,Violett Zellerg the . approach, while the latter uses .. Both have been adapted to a sensor network scenario. The proposed techniques have been evaluated in a large air-climate sensor network. The empirical study compares the accuracy and efficiency of both techniques.
发表于 2025-3-22 21:37:49 | 显示全部楼层
发表于 2025-3-23 04:41:09 | 显示全部楼层
发表于 2025-3-23 09:10:31 | 显示全部楼层
Missing Sensor Data Interpolation,g the . approach, while the latter uses .. Both have been adapted to a sensor network scenario. The proposed techniques have been evaluated in a large air-climate sensor network. The empirical study compares the accuracy and efficiency of both techniques.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 11:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表