找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Management in Machine Learning Systems; Matthias Boehm,Arun Kumar,Jun Yang Book 2019 Springer Nature Switzerland AG 2019

[复制链接]
查看: 41819|回复: 43
发表于 2025-3-21 16:26:29 | 显示全部楼层 |阅读模式
书目名称Data Management in Machine Learning Systems
编辑Matthias Boehm,Arun Kumar,Jun Yang
视频video
丛书名称Synthesis Lectures on Data Management
图书封面Titlebook: Data Management in Machine Learning Systems;  Matthias Boehm,Arun Kumar,Jun Yang Book 2019 Springer Nature Switzerland AG 2019
描述.Large-scale data analytics using machine learning (ML) underpins many modern data-driven applications. ML systems provide means of specifying and executing these ML workloads in an efficient and scalable manner. Data management is at the heart of many ML systems due to data-driven application characteristics, data-centric workload characteristics, and system architectures inspired by classical data management techniques...In this book, we follow this data-centric view of ML systems and aim to provide a comprehensive overview of data management in ML systems for the end-to-end data science or ML lifecycle. We review multiple interconnected lines of work: (1) ML support in database (DB) systems, (2) DB-inspired ML systems, and (3) ML lifecycle systems. Covered topics include: in-database analytics via query generation and user-defined functions, factorized and statistical-relational learning; optimizing compilers for ML workloads; execution strategies and hardware accelerators;data access methods such as compression, partitioning and indexing; resource elasticity and cloud markets; as well as systems for data preparation for ML, model selection, model management, model debugging, an
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-01869-5
isbn_softcover978-3-031-00741-5
isbn_ebook978-3-031-01869-5Series ISSN 2153-5418 Series E-ISSN 2153-5426
issn_series 2153-5418
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Data Management in Machine Learning Systems影响因子(影响力)




书目名称Data Management in Machine Learning Systems影响因子(影响力)学科排名




书目名称Data Management in Machine Learning Systems网络公开度




书目名称Data Management in Machine Learning Systems网络公开度学科排名




书目名称Data Management in Machine Learning Systems被引频次




书目名称Data Management in Machine Learning Systems被引频次学科排名




书目名称Data Management in Machine Learning Systems年度引用




书目名称Data Management in Machine Learning Systems年度引用学科排名




书目名称Data Management in Machine Learning Systems读者反馈




书目名称Data Management in Machine Learning Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:30:34 | 显示全部楼层
发表于 2025-3-22 03:57:59 | 显示全部楼层
发表于 2025-3-22 06:04:35 | 显示全部楼层
发表于 2025-3-22 12:23:09 | 显示全部楼层
发表于 2025-3-22 15:26:58 | 显示全部楼层
Marisol J. Voncken,Susan M. Bögelsnal model and query language seem to be a poor fit with ML, as most ML algorithms look very different from and oftentimes far more complicated than database queries. Thus, database systems have traditionally served as a data store for ML; the ML algorithm would pull the data out from the database, t
发表于 2025-3-22 18:14:14 | 显示全部楼层
发表于 2025-3-22 22:46:07 | 显示全部楼层
Cognitive Psychology: What Is In The Box?tems apply a broad range of rewrites and optimization techniques to improve the efficiency of ML programs. In this chapter, we first categorize existing systems according to their optimization scope, survey important classes of logical and physical rewrites, and also discuss means of adapting execut
发表于 2025-3-23 03:19:21 | 显示全部楼层
发表于 2025-3-23 08:54:25 | 显示全部楼层
Evolution from Linear to Systems Thinkingent data access in ML systems. These techniques bear strong similarity with corresponding data access methods in database systems, with the difference of focusing on dense and sparse matrices or tensors, as well as specific access patterns of ML workloads. In this chapter, we survey existing techniq
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-30 11:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表