找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Augmentation, Labelling, and Imperfections; Third MICCAI Worksho Yuan Xue,Chen Chen,Yihao Liu Conference proceedings 2024 The Editor(s

[复制链接]
楼主: 使无罪
发表于 2025-3-25 03:27:06 | 显示全部楼层
,URL: Combating Label Noise for Lung Nodule Malignancy Grading,y degrades the performance and generalizability of models. Although researchers adopt the label-noise-robust methods to handle label noise for lung nodule malignancy grading, they do not consider the inherent ordinal relation among classes of this task. To model the ordinal relation among classes to
发表于 2025-3-25 08:14:40 | 显示全部楼层
发表于 2025-3-25 14:16:41 | 显示全部楼层
发表于 2025-3-25 19:51:53 | 显示全部楼层
发表于 2025-3-25 23:44:08 | 显示全部楼层
Transesophageal Echocardiography Generation Using Anatomical Models,ounts of high-quality data to produce accurate results, which is difficult to satisfy. Data augmentation is commonly used to tackle this issue. In this work, we develop a pipeline to generate synthetic TEE images and corresponding semantic labels. The proposed data generation pipeline expands on an
发表于 2025-3-26 01:41:56 | 显示全部楼层
发表于 2025-3-26 08:20:24 | 显示全部楼层
发表于 2025-3-26 12:02:07 | 显示全部楼层
发表于 2025-3-26 15:49:02 | 显示全部楼层
发表于 2025-3-26 19:19:42 | 显示全部楼层
,Modular, Label-Efficient Dataset Generation for Instrument Detection for Robotic Scrub Nurses, demand large amounts of annotated data, whose creation is expensive and time-consuming. In this work, we propose a strategy based on the copy-paste technique for the generation of reliable synthetic image training data with a minimal amount of annotation effort. Our approach enables the efficient i
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 22:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表