找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Assimilation Fundamentals; A Unified Formulatio Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu Textbook‘‘‘‘‘‘‘‘ 2022 The Editor(s)

[复制链接]
楼主: JAZZ
发表于 2025-3-26 21:52:49 | 显示全部楼层
Strong-Constraint 4DVarThis chapter introduces the . (SC-4DVar) method. By strong constraint, we refer to the dynamical model having no model errors. Hence, the model solution over the assimilation window is entirely determined by the model as soon as we give the initial conditions.
发表于 2025-3-27 02:21:52 | 显示全部楼层
Randomized-Maximum-Likelihood SamplingIn the following, we derive some methods for sampling the posterior conditional pdf in Eq. (.). We aim to estimate the full pdf, not only finding its maximum. We will, in this chapter, use an approach named randomized maximum likelihood (RML) sampling.
发表于 2025-3-27 07:09:58 | 显示全部楼层
发表于 2025-3-27 11:33:54 | 显示全部楼层
Fully Nonlinear Data AssimilationThis chapter provides an introduction to methods that, in theory, samples precisely the posterior pdf. Commonly-used ensemble data-assimilation methods, like the EnKF and EnRML, only sample the posterior pdf correctly in the Gauss-linear case and typically fail in cases with strong nonlinearity.
发表于 2025-3-27 17:06:22 | 显示全部楼层
发表于 2025-3-27 19:22:08 | 显示全部楼层
EnKF for an Advection EquationThis chapter discusses a straightforward application of the EnKF with a linear advection equation. The example illustrates the smooth spatial update that the EnKF provides and how information propagates with the flow. Furthermore, we will see how the EnKF provides consistent error statistics.
发表于 2025-3-27 22:16:20 | 显示全部楼层
EnKF with the Lorenz EquationsThe chaotic Lorenz’63 model is a much-used testbed used to examine the capabilities of data-assimilation methods to handle nonlinear, unstable, and chaotic dynamics. This chapter will repeat some experiments that demonstrate the strengths of ensemble methods for highly nonlinear dynamics.
发表于 2025-3-28 02:05:27 | 显示全部楼层
Representer Method with an Ekman-Flow ModelEknes and Evensen (1997) solved the weak-constraint variational problem for a linear Ekman-flow model using the representer method. They computed the weak constraint solution for a long time series of velocity measurements. Additionally, they considered a parameter-estimation problem which rendered the problem nonlinear.
发表于 2025-3-28 06:49:21 | 显示全部楼层
发表于 2025-3-28 12:20:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 01:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表