找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Assimilation Fundamentals; A Unified Formulatio Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu Textbook‘‘‘‘‘‘‘‘ 2022 The Editor(s)

[复制链接]
查看: 17052|回复: 58
发表于 2025-3-21 19:16:15 | 显示全部楼层 |阅读模式
书目名称Data Assimilation Fundamentals
副标题A Unified Formulatio
编辑Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu
视频video
概述Derives data-assimilation methods using a top-down approach.Presents unified data-assimilation formulation.Derivation applicable to both state- and parameter estimation.Provides a deep understanding o
丛书名称Springer Textbooks in Earth Sciences, Geography and Environment
图书封面Titlebook: Data Assimilation Fundamentals; A Unified Formulatio Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu Textbook‘‘‘‘‘‘‘‘ 2022 The Editor(s)
描述.This open-access textbook‘s significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes‘ theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today‘s popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book‘s top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method fo
出版日期Textbook‘‘‘‘‘‘‘‘ 2022
关键词Open Access; Data Assimilation; Parameter Estimation; Ensemble Kalman Filter; 4DVar; Representer Method; E
版次1
doihttps://doi.org/10.1007/978-3-030-96709-3
isbn_softcover978-3-030-96711-6
isbn_ebook978-3-030-96709-3Series ISSN 2510-1307 Series E-ISSN 2510-1315
issn_series 2510-1307
copyrightThe Editor(s) (if applicable) and The Author(s) 2022
The information of publication is updating

书目名称Data Assimilation Fundamentals影响因子(影响力)




书目名称Data Assimilation Fundamentals影响因子(影响力)学科排名




书目名称Data Assimilation Fundamentals网络公开度




书目名称Data Assimilation Fundamentals网络公开度学科排名




书目名称Data Assimilation Fundamentals被引频次




书目名称Data Assimilation Fundamentals被引频次学科排名




书目名称Data Assimilation Fundamentals年度引用




书目名称Data Assimilation Fundamentals年度引用学科排名




书目名称Data Assimilation Fundamentals读者反馈




书目名称Data Assimilation Fundamentals读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:46:39 | 显示全部楼层
Springer Textbooks in Earth Sciences, Geography and Environmenthttp://image.papertrans.cn/d/image/262726.jpg
发表于 2025-3-22 03:51:53 | 显示全部楼层
Embryogenetics of Cleft Lip and Palateroximation simplifies the Bayesian posterior, which allows us to compute the maximum a posteriori (MAP) estimate and sample from the posterior pdf. This chapter will introduce the Gaussian approximation and then discuss the Gauss–Newton method for finding the MAP estimate. This method is the startin
发表于 2025-3-22 08:31:25 | 显示全部楼层
发表于 2025-3-22 11:51:11 | 显示全部楼层
Complete Bilateral Cleft Lip and Palateor a closed-form solution that minimizes the cost function, and then we continue discussing how specific cases lead to several well-known methods. The first case assumes that the measurements are all located at the initial time of the assimilation window. Thus, there is no need for any model integra
发表于 2025-3-22 16:32:08 | 显示全部楼层
发表于 2025-3-22 20:58:43 | 显示全部楼层
发表于 2025-3-23 00:02:20 | 显示全部楼层
发表于 2025-3-23 01:39:06 | 显示全部楼层
Die Kunden, die unbekannten Wesen!apply both 3DVar and SC-4DVar sequentially over multiple data-assimilation windows, and we will demonstrate the difference between the filter solution obtained by 3DVar and the recursive SC-4DVar smoother solution. We will also dive deeper into the behavior of the SC-4DVar with highly nonlinear- and
发表于 2025-3-23 06:34:47 | 显示全部楼层
Data Assimilation Fundamentals978-3-030-96709-3Series ISSN 2510-1307 Series E-ISSN 2510-1315
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 19:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表