找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: angiotensin-I
发表于 2025-3-30 11:51:47 | 显示全部楼层
Bauliche Voraussetzungen und Hygienees. To address this, we introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass without the need for holding out any images from the target scene. Our meta-calibrator is a neural network that takes as input the NeRF images and uncalibrate
发表于 2025-3-30 12:29:44 | 显示全部楼层
W. Steggemann,C. Krabbe-Steggemanntrates consistent and substantial performance improvements over five popular benchmarks compared with state-of-the-art methods. Notably, on the CityScapes dataset, MetaAT achieves a 1.36% error rate in performance estimation using only 0.07% of annotations, marking a . improvement over existing stat
发表于 2025-3-30 16:41:44 | 显示全部楼层
,SeA: Semantic Adversarial Augmentation for Last Layer Features from Unsupervised Representation Lea on 11 benchmark downstream classification tasks with 4 popular pre-trained models. Our method is . better than the deep features without SeA on average. Moreover, compared to the expensive fine-tuning that is expected to give good performance, SeA shows a comparable performance on 6 out of 11 tasks
发表于 2025-3-30 22:15:18 | 显示全部楼层
,Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generaly minimizing resource utilization. We substantiate our claim with a theoretical analysis, demonstrating the asymptotic resemblance of the process to the hypothetical ideal of completely centralized training on a heterogeneous dataset. Empirical evidence from our comprehensive experiments indicates
发表于 2025-3-31 04:26:37 | 显示全部楼层
,Rethinking Fast Adversarial Training: A Splitting Technique to Overcome Catastrophic Overfitting,pagation, presenting an efficient solution to enhance adversarial robustness. Our comprehensive evaluation conducted across standard datasets, demonstrates that our DR splitting-based model not only improves adversarial robustness but also achieves this with remarkable efficiency compared to various
发表于 2025-3-31 05:21:35 | 显示全部楼层
发表于 2025-3-31 11:31:21 | 显示全部楼层
发表于 2025-3-31 17:26:17 | 显示全部楼层
发表于 2025-3-31 18:12:48 | 显示全部楼层
发表于 2025-4-1 01:38:23 | 显示全部楼层
,3D Hand Pose Estimation in Everyday Egocentric Images,, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on 4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate the effectiveness of our approach across 2D and 3D metrics, where we beat past methods by 7.4% – 66%. In system level comparison
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 11:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表