找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: angiotensin-I
发表于 2025-3-26 22:35:26 | 显示全部楼层
发表于 2025-3-27 01:11:27 | 显示全部楼层
发表于 2025-3-27 08:24:48 | 显示全部楼层
,Enhancing Plausibility Evaluation for Generated Designs with Denoising Autoencoder,l metric Fréchet Denoised Distance (FDD). We experimentally test our FDD, FID and other state-of-the-art metrics on multiple datasets, .., BIKED, Seeing3DChairs, FFHQ and ImageNet. Our FDD can effectively detect implausible structures and is more consistent with structural inspections by human experts. Our source code is publicly available at ..
发表于 2025-3-27 13:31:39 | 显示全部楼层
发表于 2025-3-27 17:03:40 | 显示全部楼层
Optimization-Based Uncertainty Attribution Via Learning Informative Perturbations,out manually tuning the perturbation parameters; and a novel application of Gumbel-sigmoid reparameterization for efficiently learning Bernoulli-distributed binary masks under continuous optimization. Our experiments on problematic region detection and faithfulness tests demonstrate our method’s superiority over state-of-the-art UA methods.
发表于 2025-3-27 18:35:52 | 显示全部楼层
,Context-Aware Action Recognition: Introducing a Comprehensive Dataset for Behavior Contrast,lso extends to everyday situations like basketball, underscoring the task’s broad relevance. By evaluating leading techniques on this dataset, we aim to unearth valuable insights, pushing the boundaries of action understanding in both industrial and everyday contexts.
发表于 2025-3-27 22:51:20 | 显示全部楼层
发表于 2025-3-28 05:03:29 | 显示全部楼层
https://doi.org/10.1007/978-3-476-05116-5rops in the image and camera intrinsics. Experiments on three popular 3D-from-a-single-image benchmarks: depth prediction on NYU, 3D object detection on KITTI & nuScenes, and predicting 3D shapes of articulated objects on ARCTIC, show the benefits of KPE.
发表于 2025-3-28 07:53:01 | 显示全部楼层
发表于 2025-3-28 11:35:40 | 显示全部楼层
Mark Docherty,Andrew Carson,Matthew Ward on 11 benchmark downstream classification tasks with 4 popular pre-trained models. Our method is . better than the deep features without SeA on average. Moreover, compared to the expensive fine-tuning that is expected to give good performance, SeA shows a comparable performance on 6 out of 11 tasks
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 11:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表