找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: Madison
发表于 2025-3-30 11:53:57 | 显示全部楼层
Pamela B. Hoffman,Leslie S. Libowlinear optimization problem. Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method, outperforming other alternative methods in terms of efficiency and accuracy. Dataset used in this paper can be found at ..
发表于 2025-3-30 16:28:06 | 显示全部楼层
发表于 2025-3-30 16:36:42 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-2655-9ong-tail problem. To address these issues, we propose VEON for .ocabulary-.nhanced .ccupancy predictio. by not only assembling but also adapting these foundation models. We first equip MiDaS with a Zoedepth head and low-rank adaptation (LoRA) for relative-metric-bin depth transformation while reserv
发表于 2025-3-30 23:18:10 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-2655-9 sample. Experimental results demonstrate a considerable improvement over existing methodologies, which illustrate the effectiveness of the proposed method in the field of continual learning. Code is available at ..
发表于 2025-3-31 01:42:03 | 显示全部楼层
Jessica E. Young,Lawrence S. B. Goldsteing gradients from appearance loss to flow from shadows to influence the estimation of illumination and geometry. Our method estimates high-quality albedo, geometry, illumination and sky visibility, achieving state-of-the-art results on the NeRF-OSR relighting benchmark. Our code and models can be fou
发表于 2025-3-31 05:49:50 | 显示全部楼层
Jessica E. Young,Lawrence S. B. Goldsteinining consistency between live and spoof face identities, which can also alleviate the scarcity of labeled data with novel type attacks faced by nowadays FAS system. We demonstrate the effectiveness of our framework on challenging cross-domain and cross-attack FAS datasets, achieving the state-of-th
发表于 2025-3-31 12:16:52 | 显示全部楼层
发表于 2025-3-31 14:53:54 | 显示全部楼层
https://doi.org/10.1007/978-1-59259-661-4specific axes are critical, by providing simplified and easily readable motion information. To achieve this, we propose a novel Motion Separation Module that enables the disentangling and magnifying of motion representation along axes of interest. Furthermore, we build a new synthetic training datas
发表于 2025-3-31 20:02:44 | 显示全部楼层
Ramon Diaz-Arrastia,Fred Baskinw that it actually outperforms most of the previous SFOD methods. Additionally, we showcase that an even simpler strategy consisting in training on a fixed set of pseudo-labels can achieve similar performance to the more complex teacher-student mutual learning, while being computationally efficient
发表于 2025-4-1 01:31:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 12:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表