找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: Madison
发表于 2025-3-28 18:11:48 | 显示全部楼层
发表于 2025-3-28 20:07:01 | 显示全部楼层
,Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion, fusion to further mitigate forgetting during adapter module fine-tuning. Experiments on several conventional benchmarks show that our method achieves state-of-the-art results. Our code is available at ..
发表于 2025-3-29 01:25:32 | 显示全部楼层
发表于 2025-3-29 04:38:57 | 显示全部楼层
发表于 2025-3-29 08:59:01 | 显示全部楼层
,Delving Deep into Engagement Prediction of Short Videos,al content, background music, and text data, are investigated to enhance engagement prediction. With the proposed dataset and two key metrics, our method demonstrates its ability to predict engagements of short videos purely from video content.
发表于 2025-3-29 15:11:59 | 显示全部楼层
,Flexible Distribution Alignment: Towards Long-Tailed Semi-supervised Learning with Proper Calibrati proves robust against label shift, significantly improves model calibration in LTSSL contexts, and surpasses previous state-of-of-art approaches across multiple benchmarks, including CIFAR100-LT, STL10-LT, and ImageNet127, addressing class imbalance challenges in semi-supervised learning. Our code
发表于 2025-3-29 16:06:11 | 显示全部楼层
,CLEO: Continual Learning of Evolving Ontologies,ver time, such as those in autonomous driving. We use Cityscapes, PASCAL VOC, and Mapillary Vistas to define the task settings and demonstrate the applicability of CLEO. We highlight the shortcomings of existing CIL methods in adapting to CLEO and propose a baseline solution, called Modelling Ontolo
发表于 2025-3-29 22:45:02 | 显示全部楼层
Advocacy for Persons with Senile Dementiaboth in space and time. We theoretically derive the complexity of all components in our architecture, and experimentally validate our method on tasks for object recognition, object detection and gesture recognition. FARSE-CNN achieves similar or better performance than the state-of-the-art among asy
发表于 2025-3-30 02:04:06 | 显示全部楼层
发表于 2025-3-30 07:44:02 | 显示全部楼层
Vijaya L. Melnick,Nancy Neveloff Dublerrompt Learning, utilizing multiple context-specific prompts for text embeddings to capture diverse class representations across masks. Overall, MTA-CLIP achieves state-of-the-art, surpassing prior works by an average of 2.8% and 1.3% on standard benchmark datasets, ADE20k and Cityscapes, respectivel
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 12:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表