找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: 服装
发表于 2025-3-30 08:39:24 | 显示全部楼层
,WeConvene: Learned Image Compression with Wavelet-Domain Convolution and Entropy Model,rser in DWT domain. We also propose a .av.let-domain .annel-wise .uto-.egressive entropy .odel (WeChARM), where the output latent representations from the encoder network are first transformed by the DWT, before applying quantization and entropy coding, as in the traditional paradigm. Moreover, the
发表于 2025-3-30 13:49:29 | 显示全部楼层
,Grid-Attention: Enhancing Computational Efficiency of Large Vision Models Without Fine-Tuning,MHA to enhance the large vision models’ computational efficiency and preserve their performance without the need for re-training or fine-tuning their parameters. We conduct extensive experiments on recent high-resolution tasks, including zero-shot instance segmentation (SAM, Expedit-SAM), text-to-im
发表于 2025-3-30 19:27:55 | 显示全部楼层
发表于 2025-3-30 20:43:41 | 显示全部楼层
发表于 2025-3-31 02:24:48 | 显示全部楼层
发表于 2025-3-31 06:30:42 | 显示全部楼层
发表于 2025-3-31 10:33:55 | 显示全部楼层
,Learning by Aligning 2D Skeleton Sequences and Multi-modality Fusion,nsive evaluations on three public datasets, i.e., Penn Action, IKEA ASM, and H2O, demonstrate that our approach outperforms previous methods in different fine-grained human activity understanding tasks. Finally, fusing 2D skeleton heatmaps with RGB videos yields the state-of-the-art on all metrics a
发表于 2025-3-31 13:23:42 | 显示全部楼层
,Object-Oriented Anchoring and Modal Alignment in Multimodal Learning,ile also preserving explicit semantics for modality interactions. Additionally, we design fine-grained token-level asymmetry alignment between modalities and multiview mining to promote modality alignment. To the best of our knowledge, we are the first to apply object-oriented tokens in multimodal p
发表于 2025-3-31 19:45:27 | 显示全部楼层
发表于 2025-4-1 01:44:48 | 显示全部楼层
,FYI: Flip Your Images for Dataset Distillation,ue for dataset distillation, dubbed FYI, that enables distilling rich semantics of real images into synthetic ones. To this end, FYI embeds a horizontal flipping technique into distillation processes, mitigating the influence of the bilateral equivalence, while capturing more details of objects. Exp
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 14:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表