找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: 呻吟
发表于 2025-3-26 20:57:17 | 显示全部楼层
,LTRL: Boosting Long-Tail Recognition via Reflective Learning, are lightweight enough to plug and play with existing long-tail learning methods, achieving state-of-the-art performance in popular long-tail visual benchmarks. The experimental results highlight the great potential of reflecting learning in dealing with long-tail recognition. The code will be available at ..
发表于 2025-3-27 03:24:58 | 显示全部楼层
发表于 2025-3-27 08:30:53 | 显示全部楼层
发表于 2025-3-27 11:02:58 | 显示全部楼层
发表于 2025-3-27 14:19:21 | 显示全部楼层
Analyse und Interpretation der Ergebnisseons and high dynamic range which are well-suited for correspondence tasks such as optical flow and point tracking. However, so far there is still a lack of comprehensive benchmarks for correspondence tasks with both event data and images. To fill this gap, we propose ., a large-scale and diverse ben
发表于 2025-3-27 18:25:07 | 显示全部楼层
https://doi.org/10.1007/978-3-642-72495-4 controllability of anomaly synthesis, particularly for weak defects that are very similar to normal regions. In this paper, we propose Global and Local Anomaly co-Synthesis Strategy (GLASS), a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hype
发表于 2025-3-28 01:52:32 | 显示全部楼层
发表于 2025-3-28 04:50:18 | 显示全部楼层
发表于 2025-3-28 10:02:14 | 显示全部楼层
https://doi.org/10.1007/978-3-642-72495-4ey do not address the issues of sufficient target interaction and efficient parallel processing simultaneously, thereby constraining the learning of dynamic, target-aware features. To tackle these limitations, this paper proposes a spatial-temporal multi-level association framework, which jointly as
发表于 2025-3-28 11:03:33 | 显示全部楼层
https://doi.org/10.1007/978-3-642-72495-4ate on high-resolution images (.., 8 megapixels) to capture the fine details. However, this comes at the cost of considerable computational complexity, hindering the deployment in latency-sensitive scenarios. In this paper, we introduce ., a novel approach that enhances . predictions with . refineme
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 12:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表