找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: FLAW
发表于 2025-3-25 04:26:14 | 显示全部楼层
,Taming Lookup Tables for Efficient Image Retouching,n. We observe that the pointwise network structure exhibits robust scalability, upkeeping the performance even with a heavily downsampled . input image. These enable ICELUT, the . purely LUT-based image enhancer, to reach an unprecedented speed of 0.4 ms on GPU and 7 ms on CPU, at least one order fa
发表于 2025-3-25 10:33:06 | 显示全部楼层
,DualDn: Dual-Domain Denoising via Differentiable ISP,ts to sensor-specific noise as well as spatially varying noise levels, while the sRGB domain denoising adapts to ISP variations and removes residual noise amplified by the ISP. Both denoising networks are connected with a differentiable ISP, which is trained end-to-end and discarded during the infer
发表于 2025-3-25 15:14:42 | 显示全部楼层
发表于 2025-3-25 19:47:14 | 显示全部楼层
发表于 2025-3-25 20:56:01 | 显示全部楼层
发表于 2025-3-26 03:16:30 | 显示全部楼层
发表于 2025-3-26 07:29:53 | 显示全部楼层
,Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector,proposed measures: style, ICV, and IB. Consequently, we propose several novel modules to address these issues. First, the learnable instance features align initial fixed instances with target categories, enhancing feature distinctiveness. Second, the instance reweighting module assigns higher import
发表于 2025-3-26 11:04:22 | 显示全部楼层
,NICP: Neural ICP for 3D Human Registration at Scale,izes and scales across thousands of shapes and more than ten different data sources. Our essential contribution is NICP, an ICP-style self-supervised task tailored to neural fields. NICP takes a few seconds, is self-supervised, and works out of the box on pre-trained neural fields. NSR combines NICP
发表于 2025-3-26 12:57:05 | 显示全部楼层
发表于 2025-3-26 20:47:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 10:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表