找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cubic Forms and the Circle Method; Tim Browning Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spri

[复制链接]
查看: 39934|回复: 39
发表于 2025-3-21 17:12:47 | 显示全部楼层 |阅读模式
书目名称Cubic Forms and the Circle Method
编辑Tim Browning
视频video
概述Gives a modern account of the Hardy–Littlewood circle method.Including its workings over number fields and function fields.Illustrates the use of the circle method in algebraic geometry
丛书名称Progress in Mathematics
图书封面Titlebook: Cubic Forms and the Circle Method;  Tim Browning Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spri
描述The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties.  This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
出版日期Book 2021
关键词Circle method; Cubic forms; Diophantine equations; Fourier analysis; Global fields; Hasse principle; Local
版次1
doihttps://doi.org/10.1007/978-3-030-86872-7
isbn_softcover978-3-030-86874-1
isbn_ebook978-3-030-86872-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Cubic Forms and the Circle Method影响因子(影响力)




书目名称Cubic Forms and the Circle Method影响因子(影响力)学科排名




书目名称Cubic Forms and the Circle Method网络公开度




书目名称Cubic Forms and the Circle Method网络公开度学科排名




书目名称Cubic Forms and the Circle Method被引频次




书目名称Cubic Forms and the Circle Method被引频次学科排名




书目名称Cubic Forms and the Circle Method年度引用




书目名称Cubic Forms and the Circle Method年度引用学科排名




书目名称Cubic Forms and the Circle Method读者反馈




书目名称Cubic Forms and the Circle Method读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:49:55 | 显示全部楼层
发表于 2025-3-22 01:52:34 | 显示全部楼层
发表于 2025-3-22 06:07:08 | 显示全部楼层
https://doi.org/10.1007/978-3-030-86872-7Circle method; Cubic forms; Diophantine equations; Fourier analysis; Global fields; Hasse principle; Local
发表于 2025-3-22 11:05:32 | 显示全部楼层
978-3-030-86874-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 14:13:53 | 显示全部楼层
Christine G. Krüger,Sonja LevsenIn this chapter we discuss cubic Diophantine equations over the function field ., where . is a finite field with . elements. Any homogeneous cubic polynomial in at least 10 variables over . admits a non-trivial zero over ., by Theorem ..
发表于 2025-3-22 17:44:59 | 显示全部楼层
Polish Volunteers in the Napoleonic Wars,A key part of higher-dimensional algebraic geometry involves uncovering the connection between the geometry of algebraic varieties and the geometry of the . of genus 0 curves (of fixed degree) that are contained in them. In general, these spaces are very difficult to access and remain largely elusive.
发表于 2025-3-23 00:41:36 | 显示全部楼层
发表于 2025-3-23 02:32:34 | 显示全部楼层
发表于 2025-3-23 06:18:53 | 显示全部楼层
,Waring’s Problem for Cubes,s as a sum of integers drawn from a particular set, such as the set of primes, squares or cubes. All of the examples in this book concern cubic polynomials and the goal of this chapter is to illustrate the genesis of the circle method through one of the most famous additive problems.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 14:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表