找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Crystallographic Texture and Group Representations; Chi-Sing Man Book 2023 Springer Nature B.V. 2023 Quantitative texture analysis.Orienta

[复制链接]
查看: 52473|回复: 54
发表于 2025-3-21 18:43:33 | 显示全部楼层 |阅读模式
书目名称Crystallographic Texture and Group Representations
编辑Chi-Sing Man
视频video
图书封面Titlebook: Crystallographic Texture and Group Representations;  Chi-Sing Man Book 2023 Springer Nature B.V. 2023 Quantitative texture analysis.Orienta
描述.This book starts with an introduction to quantitative texture analysis (QTA), which adopts conventions (active rotations, definition of Euler angles, Wigner D-functions) that conform to those of the present-day mathematics and physics literature. Basic concepts (e.g., orientation; orientation distribution function (ODF), orientation density function, and their relationship) are made precise through their mathematical definition. Parts II and III delve deeper into the mathematical foundations of QTA, where the important role played by group representations is emphasized. Part II includes one chapter on generalized QTA based on the orthogonal group, and Part III one on tensorial Fourier expansion of the ODF and tensorial texture coefficients.  .This work will appeal to students and practitioners who appreciate a precise presentation of QTA through a unifying mathematical language, and to researchers who are interested in applications of group representations to texture analysis. .Previously published in the .Journal of Elasticity., Volume 149, issues 1-2, April, 2022.
出版日期Book 2023
关键词Quantitative texture analysis; Orientation distribution function; Orientation measure; Orientation spac
版次1
doihttps://doi.org/10.1007/978-94-024-2158-3
isbn_ebook978-94-024-2158-3
copyrightSpringer Nature B.V. 2023
The information of publication is updating

书目名称Crystallographic Texture and Group Representations影响因子(影响力)




书目名称Crystallographic Texture and Group Representations影响因子(影响力)学科排名




书目名称Crystallographic Texture and Group Representations网络公开度




书目名称Crystallographic Texture and Group Representations网络公开度学科排名




书目名称Crystallographic Texture and Group Representations被引频次




书目名称Crystallographic Texture and Group Representations被引频次学科排名




书目名称Crystallographic Texture and Group Representations年度引用




书目名称Crystallographic Texture and Group Representations年度引用学科排名




书目名称Crystallographic Texture and Group Representations读者反馈




书目名称Crystallographic Texture and Group Representations读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:38:46 | 显示全部楼层
The Peter-Weyl Theorem, faithful representation as the selfrepresentation . is faithful. In this exposition we are concerned only with matrix groups such as SO(3), O(3), etc., so the elementary proof suffices for our purpose here.
发表于 2025-3-22 01:00:55 | 显示全部楼层
发表于 2025-3-22 05:04:54 | 显示全部楼层
er angles, Wigner D-functions) that conform to those of the present-day mathematics and physics literature. Basic concepts (e.g., orientation; orientation distribution function (ODF), orientation density function, and their relationship) are made precise through their mathematical definition. Parts
发表于 2025-3-22 10:25:16 | 显示全部楼层
发表于 2025-3-22 16:30:46 | 显示全部楼层
Walled Towns during the Wars of Religion faithful representation as the selfrepresentation . is faithful. In this exposition we are concerned only with matrix groups such as SO(3), O(3), etc., so the elementary proof suffices for our purpose here.
发表于 2025-3-22 19:47:14 | 显示全部楼层
发表于 2025-3-23 01:11:41 | 显示全部楼层
Orientation Space for Polycrystals with Crystallite Symmetry,tes, i.e., where . = {.} and . = {.}.. In Chap. . we follow Roe, who in his two seminal papers [270, 271] shows that the presence of non-trivial sample and/or crystallite symmetries leads to restrictions that the texture coefficients must satisfy.
发表于 2025-3-23 02:27:06 | 显示全部楼层
发表于 2025-3-23 06:02:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 07:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表