找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cryptographic Applications of Analytic Number Theory; Complexity Lower Bou Igor Shparlinski Book 2003 Springer Basel AG 2003 Cryptography.D

[复制链接]
楼主: Boldfaced
发表于 2025-3-26 23:10:34 | 显示全部楼层
发表于 2025-3-27 03:39:20 | 显示全部楼层
发表于 2025-3-27 05:56:17 | 显示全部楼层
Sridhar P. Arjunan,Arockia Vijay Josephol, is based on the still unproved assumption that recovering the value of the Diffie-Hellman secret key . from the known values of g.and g.is essentially equivalent to the discrete logarithm problem and therefore is hard. Here we show that even computation of . from g.cannot be realized by a polynomial of low degree.
发表于 2025-3-27 11:22:28 | 显示全部楼层
Progress in Computer Science and Applied Logichttp://image.papertrans.cn/d/image/240535.jpg
发表于 2025-3-27 15:03:58 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8037-4Cryptography; Digital Signature Algorithm; Nonce; Sage; complexity; complexity theory; computer science; fi
发表于 2025-3-27 20:55:08 | 显示全部楼层
发表于 2025-3-28 00:42:14 | 显示全部楼层
Mohammad Ebrahim Banihabib,Bahman Vazirims, signature schemes, pseudorandom number generators and other related constructions. In many cases this has led to new and unexpected points of view on some number theoretic problems. Thus we believe that our approach can enrich and crossfertilise both areas.
发表于 2025-3-28 03:55:47 | 显示全部楼层
发表于 2025-3-28 08:27:45 | 显示全部楼层
2297-0576 It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num­ bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such
发表于 2025-3-28 11:01:12 | 显示全部楼层
Ye Chao,Zhang Yi,Yu Bin,Xing Bintion of computing powers in parallel shows in some cases (over finite fields of small characteristic), the Boolean model of computation is exponentially more powerful than the arithmetic model [200, 201].
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 15:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表