找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Correlation Clustering; Francesco Bonchi,David García-Soriano,Francesco Gu Book 2022 Springer Nature Switzerland AG 2022

[复制链接]
查看: 48149|回复: 36
发表于 2025-3-21 17:29:25 | 显示全部楼层 |阅读模式
书目名称Correlation Clustering
编辑Francesco Bonchi,David García-Soriano,Francesco Gu
视频video
丛书名称Synthesis Lectures on Data Mining and Knowledge Discovery
图书封面Titlebook: Correlation Clustering;  Francesco Bonchi,David García-Soriano,Francesco Gu Book 2022 Springer Nature Switzerland AG 2022
描述Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters. In most of the variants of correlation clustering, the number of clusters is not a given parameter; instead, the optimal number of clusters is automatically determined. Correlation clustering is perhaps the most natural formulation of clustering: as it just needs a definition of similarity, its broad generality makes it applicable to a wide range of problems in different contexts, and, particularly, makes it naturally suitable to clustering structured objects for which feature vectors can be difficult to obtain. Despite its simplicity, generality, and wide applicability, correlation clustering has so far received much more attention from an algorithmic-theory perspective than from the data-mining community. The goal of this lecture is to show how correlation clustering can be a powerful addition to the toolkit of a data-mining researcher and practitioner, and to encourage further research in the area
出版日期Book 2022
版次1
doihttps://doi.org/10.1007/978-3-031-79210-6
isbn_softcover978-3-031-79198-7
isbn_ebook978-3-031-79210-6Series ISSN 2151-0067 Series E-ISSN 2151-0075
issn_series 2151-0067
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

书目名称Correlation Clustering影响因子(影响力)




书目名称Correlation Clustering影响因子(影响力)学科排名




书目名称Correlation Clustering网络公开度




书目名称Correlation Clustering网络公开度学科排名




书目名称Correlation Clustering被引频次




书目名称Correlation Clustering被引频次学科排名




书目名称Correlation Clustering年度引用




书目名称Correlation Clustering年度引用学科排名




书目名称Correlation Clustering读者反馈




书目名称Correlation Clustering读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:09:08 | 显示全部楼层
发表于 2025-3-22 03:14:21 | 显示全部楼层
Francesco Bonchi,David García-Soriano,Francesco Gu
发表于 2025-3-22 07:07:38 | 显示全部楼层
发表于 2025-3-22 11:07:26 | 显示全部楼层
发表于 2025-3-22 13:35:59 | 显示全部楼层
发表于 2025-3-22 19:34:05 | 显示全部楼层
Synthesis Lectures on Data Mining and Knowledge Discoveryhttp://image.papertrans.cn/c/image/238762.jpg
发表于 2025-3-22 21:36:38 | 显示全部楼层
发表于 2025-3-23 02:25:28 | 显示全部楼层
Correlation Clustering978-3-031-79210-6Series ISSN 2151-0067 Series E-ISSN 2151-0075
发表于 2025-3-23 06:13:02 | 显示全部楼层
Individuierung als „Trieb“ und Affektlts in a shrinkage of the feasible region, the corresponding constrained formulations can be interpreted as . of the basic correlation-clustering formulation, as the latter can be obtained from a constrained formulation by setting the additional constraints to . values.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 00:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表