找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convergence of Stochastic Processes; David Pollard Book 1984 Springer-Verlag New York Inc. 1984 Brownian bridge.Brownian motion.Convergenc

[复制链接]
查看: 54906|回复: 41
发表于 2025-3-21 16:07:28 | 显示全部楼层 |阅读模式
书目名称Convergence of Stochastic Processes
编辑David Pollard
视频video
丛书名称Springer Series in Statistics
图书封面Titlebook: Convergence of Stochastic Processes;  David Pollard Book 1984 Springer-Verlag New York Inc. 1984 Brownian bridge.Brownian motion.Convergenc
描述A more accurate title for this book might be: An Exposition of Selected Parts of Empirical Process Theory, With Related Interesting Facts About Weak Convergence, and Applications to Mathematical Statistics. The high points are Chapters II and VII, which describe some of the developments inspired by Richard Dudley‘s 1978 paper. There I explain the combinatorial ideas and approximation methods that are needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions. The material is somewhat arbitrarily divided into results used to prove consistency theorems and results used to prove central limit theorems. This has allowed me to put the easier material in Chapter II, with the hope of enticing the casual reader to delve deeper. Chapters III through VI deal with more classical material, as seen from a different perspective. The novelties are: convergence for measures that don‘t live on borel a-fields; the joys of working with the uniform metric on D[O, IJ; and finite-dimensional approximation as the unifying idea behind weak convergence. Uniform tightness reappears in disguise as a condition that justifies the finite-dimensional approxima
出版日期Book 1984
关键词Brownian bridge; Brownian motion; Convergence; Gaussian process; Martingale; Maxima; Stochastic processes;
版次1
doihttps://doi.org/10.1007/978-1-4612-5254-2
isbn_softcover978-1-4612-9758-1
isbn_ebook978-1-4612-5254-2Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

书目名称Convergence of Stochastic Processes影响因子(影响力)




书目名称Convergence of Stochastic Processes影响因子(影响力)学科排名




书目名称Convergence of Stochastic Processes网络公开度




书目名称Convergence of Stochastic Processes网络公开度学科排名




书目名称Convergence of Stochastic Processes被引频次




书目名称Convergence of Stochastic Processes被引频次学科排名




书目名称Convergence of Stochastic Processes年度引用




书目名称Convergence of Stochastic Processes年度引用学科排名




书目名称Convergence of Stochastic Processes读者反馈




书目名称Convergence of Stochastic Processes读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:45:54 | 显示全部楼层
发表于 2025-3-22 03:12:27 | 显示全部楼层
Central Limit Theorems,d with central limit theorems for statistics defined by maximization or minimization of a random process, many of the technicalities can be drawn off into a single stochastic equicontinuity condition. This section shows how. Empirical process methods for establishing stochastic equicontinuity will be developed later in the chapter.
发表于 2025-3-22 05:47:43 | 显示全部楼层
发表于 2025-3-22 10:31:32 | 显示全部楼层
发表于 2025-3-22 13:31:16 | 显示全部楼层
Optimal Control Problems: A General Scheme,alize the general theory to the particular function space .[0, 1], under its uniform metric. It will turn out that most applications, especially those that come up with brownian bridges and brownian motions as limit processes, require no fancier setting than this.
发表于 2025-3-22 20:18:18 | 显示全部楼层
发表于 2025-3-23 00:17:38 | 显示全部楼层
,The Skorohod Metric on ,[0, ∞),hich the uniform metric would suffice.) But Skorohod’s . metric on .[0, 1] will not be the main concern of this chapter. Instead we shall investigate a sort of . convergence on compacta for .[0, ∞], the space where the interesting applications live.
发表于 2025-3-23 01:40:18 | 显示全部楼层
发表于 2025-3-23 06:59:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 19:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表