找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convergence and Summability of Fourier Transforms and Hardy Spaces; Ferenc Weisz Book 2017 Springer International Publishing AG 2017 Fejér

[复制链接]
楼主: Orthosis
发表于 2025-3-23 11:37:49 | 显示全部楼层
发表于 2025-3-23 16:56:27 | 显示全部楼层
2296-5009 cent results from the past 20-30 years.Considers strong summThis book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, whic
发表于 2025-3-23 19:31:50 | 显示全部楼层
发表于 2025-3-24 01:03:18 | 显示全部楼层
System Requirements and Licensing,. are very similar to those for the one-dimensional . spaces studied in Chap. ., so we omit the corresponding proofs. However, the proofs for . are different from the one-dimensional version requiring new ideas. We also study some generalizations of the Hardy-Littlewood maximal function for multi-dimensional functions.
发表于 2025-3-24 03:34:42 | 显示全部楼层
发表于 2025-3-24 09:17:38 | 显示全部楼层
https://doi.org/10.1007/979-8-8688-0500-4gular Dirichlet integrals. Using the analogous results for the partial sums of multi-dimensional Fourier series proved in Section 4.2, we show that the Dirichlet integrals converge in the .-norm to the function (1 < . < .). The multi-dimensional version of Carleson’s theorem is also verified.
发表于 2025-3-24 12:42:50 | 显示全部楼层
One-Dimensional Fourier Transforms . < .). The proof of Carleson’s theorem, i.e. that of the almost everywhere convergence can be found in Carleson [52], Grafakos [152], Arias de Reyna [8], Muscalu and Schlag [253], Lacey [207] or Demeter [88].
发表于 2025-3-24 17:51:52 | 显示全部楼层
发表于 2025-3-24 19:10:40 | 显示全部楼层
Book 2017y spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. .Following on the classic books by Bary (1964) and Zygmund (1968), th
发表于 2025-3-25 02:23:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 18:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表