找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convergence and Summability of Fourier Transforms and Hardy Spaces; Ferenc Weisz Book 2017 Springer International Publishing AG 2017 Fejér

[复制链接]
楼主: Orthosis
发表于 2025-3-25 05:28:32 | 显示全部楼层
One-Dimensional Hardy Spacesein [308, 309], Stein and Weiss [311], Lu [233], Uchiyama [340] and Grafakos [152]. Beyond these, the Hardy spaces have been introduced for martingales as well (see e.g. Garsia [127], Neveu [260], Dellacherie and Meyer [85, 86], Long [232] and Weisz [347]).
发表于 2025-3-25 08:15:56 | 显示全部楼层
发表于 2025-3-25 12:46:05 | 显示全部楼层
2. Semiconvex Hulls of Compact Sets,similar results as in Chap. . For the restricted convergence, we use the Hardy space . and for the unrestricted .. We show that both maximal operators are bounded from the corresponding Hardy space to ., which implies the almost everywhere convergence. In both cases, the set of convergence is characterized as two types of Lebesgue points.
发表于 2025-3-25 17:37:12 | 显示全部楼层
发表于 2025-3-25 20:38:24 | 显示全部楼层
发表于 2025-3-26 01:15:53 | 显示全部楼层
发表于 2025-3-26 06:23:02 | 显示全部楼层
https://doi.org/10.1007/979-8-8688-0500-4 analogous results to those of Sections .–. for higher dimensions. In the first section, we introduce the Fourier transform for functions and for tempered distributions and give the most important results. Since these proofs are very similar to those of the one-dimensional ones, we omit the proofs.
发表于 2025-3-26 08:52:21 | 显示全部楼层
https://doi.org/10.1007/979-8-8688-0500-4higher dimensional Fourier transforms. As in the literature, we investigate the three cases . = 1, . = 2 and . = .. The other type of summability, the so-called rectangular summability, will be investigated in the next chapter. Both types are general summability methods defined by a function .. We w
发表于 2025-3-26 16:02:45 | 显示全部楼层
发表于 2025-3-26 19:14:31 | 显示全部楼层
https://doi.org/10.1007/978-3-319-56814-0Fejér summability; fourier analysis; hardy spaces; Lebesgue points; strong summability; harmonic analysis
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 18:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表