找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[复制链接]
楼主: Maudlin
发表于 2025-3-26 23:28:30 | 显示全部楼层
Remarks on the Nakano Vanishing Theorem,In this note we give a numerical version of k-ampleness for line bundles (Definition 1) and prove a vanishing theorem (Theorem 2) of Nakano type for these bundles. This vanishing theorem yields a Lefschetz-type theorem (Theorem 3). We begin by reviewing the Nakai-Moishezon-Kleiman criterion for ampleness on which our numerical condition is based.
发表于 2025-3-27 01:58:32 | 显示全部楼层
Extension Problems and Positive Currents in Complex Analysis,This paper is a survey of recent developments in the theory of the extension of analytic sets and closed, positive currents.
发表于 2025-3-27 08:58:56 | 显示全部楼层
Recent Developments in Homogeneous CR-Hypersurfaces,fits into a fine classification, details of its function theory, etc., one should use as much Lie theoretic information about Ĝ as is possible. In particular it is often useful to study the orbit structure of real subgroups of Ĝ. Such orbits are usually not complex sub-manifolds of X.
发表于 2025-3-27 11:21:15 | 显示全部楼层
http://image.papertrans.cn/c/image/237206.jpg
发表于 2025-3-27 16:29:38 | 显示全部楼层
https://doi.org/10.1007/978-3-663-06816-7Complex analysis; Manifold; Meromorphic function; Pseudoconvexity; arithmetic; calculus; equation; function
发表于 2025-3-27 18:56:08 | 显示全部楼层
978-3-528-08964-1Springer Fachmedien Wiesbaden 1986
发表于 2025-3-28 00:25:14 | 显示全部楼层
Arithmetic Hilbert Modular Functions Ill,gruence Eisenstein series. The main results are generalizations of the main results of Hecke’s thesis [10]. They are also subsumed in more far-reaching results of Shimura and Taniyama [15,13,14]. But our methods are quite different from the latter’s and stem directly from Hecke’s original ideas.
发表于 2025-3-28 04:35:56 | 显示全部楼层
发表于 2025-3-28 06:42:58 | 显示全部楼层
发表于 2025-3-28 12:46:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 06:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表