找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[复制链接]
楼主: Maudlin
发表于 2025-3-23 13:16:08 | 显示全部楼层
W. Creutzfeldt,C. Creutzfeldt,R. Arnold as follows. Suppose X⊂ℂ. is an analytic variety of pure dimension p and q ≥ n-p. Let G(q,n) denote the Grassmannian of q-dimensional linear subspaces of ℂ.. We measure the “growth” of a variety Y of dimension p by computing vol.(Y⋂B.(r)) where vol. denotes the 2p-Hausdorff measure. Stoll’s result r
发表于 2025-3-23 16:35:06 | 显示全部楼层
发表于 2025-3-23 19:20:27 | 显示全部楼层
发表于 2025-3-23 22:29:42 | 显示全部楼层
William Strieder,Rutherford Arisfits into a fine classification, details of its function theory, etc., one should use as much Lie theoretic information about Ĝ as is possible. In particular it is often useful to study the orbit structure of real subgroups of Ĝ. Such orbits are usually not complex sub-manifolds of X.
发表于 2025-3-24 03:15:29 | 显示全部楼层
Vorlesungen über die Theorie der PolyederThe heat equation for the .-Neumann problem on strictly pseudoconvex domains is a complex analogue of a classical problem in Riemannian geometry. In this section, we will describe some of the classical Riemannian results. To keep things simple, we will only talk about domains.
发表于 2025-3-24 08:21:42 | 显示全部楼层
Vorlesungen über die neuere GeometrieOne of the major aspects of complex analysis consists in the investigation of the implications between geometric properties of complex analytic manifolds (or complex spaces) and the nature of certain complex analytic objects on them.
发表于 2025-3-24 11:39:27 | 显示全部楼层
,Konforme Abbildung von Minimalflächen,Let X be a normal irreducible three dimensional projective variety whose local rings are Cohen Macaulay and whose dualizing sheaf, K. is invertible (see §0 for more details). We will call such a variety a Gorenstein threefold throughout this article.
发表于 2025-3-24 14:52:57 | 显示全部楼层
发表于 2025-3-24 21:21:46 | 显示全部楼层
发表于 2025-3-25 01:25:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 06:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表