找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkhäuser Basel 2006 Maxwell

[复制链接]
楼主: 代表
发表于 2025-3-25 05:51:26 | 显示全部楼层
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
发表于 2025-3-25 11:27:24 | 显示全部楼层
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
发表于 2025-3-25 14:12:18 | 显示全部楼层
发表于 2025-3-25 17:12:07 | 显示全部楼层
Symmetry of Solutions of a Semilinear Elliptic Problem in an Annulus,r. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
发表于 2025-3-25 20:21:33 | 显示全部楼层
发表于 2025-3-26 02:39:16 | 显示全部楼层
On a Class of Critical Elliptic Equations of Caffarelli-Kohn-Nirenberg Type,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
发表于 2025-3-26 05:11:11 | 显示全部楼层
发表于 2025-3-26 10:29:01 | 显示全部楼层
发表于 2025-3-26 14:19:44 | 显示全部楼层
发表于 2025-3-26 16:51:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-18 14:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表