找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Continuum Mechanics, Applied Mathematics and Scientific Computing:Godunov‘s Legacy; A Liber Amicorum to Gennadii V. Demidenko,Evgeniy Rome

[复制链接]
楼主: 固执已见
发表于 2025-3-25 04:23:12 | 显示全部楼层
发表于 2025-3-25 09:28:09 | 显示全部楼层
发表于 2025-3-25 13:50:20 | 显示全部楼层
发表于 2025-3-25 17:55:44 | 显示全部楼层
发表于 2025-3-25 21:49:36 | 显示全部楼层
发表于 2025-3-26 01:28:25 | 显示全部楼层
Development of the Matrix Spectrum Dichotomy Method,The work provides a systematic review of algorithms and applications of the dichotomy problem of the matrix spectrum. This problem is a promising alternative to the asymmetric spectral problem in the classical formulation.
发表于 2025-3-26 05:44:57 | 显示全部楼层
An All-Regime and Well-Balanced Lagrange-Projection Scheme for the Shallow Water Equations on UnstrWe are interested in the numerical approximation of the shallow water equations in two space dimensions. We propose a well-balanced, all-regime, and positive scheme. Our approach is based on a Lagrange-projection decomposition which allows to naturally decouple the acoustic and transport terms.
发表于 2025-3-26 10:50:43 | 显示全部楼层
On Estimates of Solutions to One Class of Functional Difference Equations with Periodic CoefficientIn the present paper, we consider a class of functional difference equations with periodic coefficients. We establish criteria for asymptotic stability of the zero solution to the equations and obtain estimates characterizing the decay rates of solutions to these equations at infinity.
发表于 2025-3-26 15:51:02 | 显示全部楼层
发表于 2025-3-26 16:55:43 | 显示全部楼层
An Easy Control of the Artificial Numerical Viscosity to Get Discrete Entropy Inequalities When App general, very difficult to obtain. In the present work, we present a suitable control of the numerical artificial viscosity in order to recover the expected discrete entropy inequalities. Moreover, the artificial viscosity control turns out to be very easy and the resulting numerical implementation is very convenient.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-9 19:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表