找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Continuous Selections of Multivalued Mappings; Dušan Repovš,Pavel Vladimirovič Semenov Book 1998 Springer Science+Business Media Dordrecht

[复制链接]
楼主: Inspection
发表于 2025-3-28 18:33:56 | 显示全部楼层
https://doi.org/10.1007/978-94-017-1162-3Dimension; Grad; Homeomorphism; functional analysis; manifold; topology
发表于 2025-3-28 21:12:51 | 显示全部楼层
发表于 2025-3-28 23:52:08 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/c/image/237017.jpg
发表于 2025-3-29 06:18:12 | 显示全部楼层
Elke Franz,Anja Jerichow,Andreas PfitzmannIn this section all multivalued mappings are assumed to have convex values in some Banach space. We begin with the union of Theorems (1.1) and (1.5) [258, Theorem (3.2)”].
发表于 2025-3-29 10:25:36 | 显示全部楼层
发表于 2025-3-29 15:01:18 | 显示全部楼层
https://doi.org/10.1007/978-3-322-87092-6Pełczyński [330] introduced the notion of Milyutin space and Dugundji space. Ščepin [370] proposed the notions of Milyutin mapping and Dugundji embedding and defined a . (.) . as a compactum which admits a Milyutin mapping (respectively, Dugundji embedding) from a power {0, 1}. onto . (respectively, from . into a power [0, 1].).
发表于 2025-3-29 19:36:26 | 显示全部楼层
发表于 2025-3-29 19:52:34 | 显示全部楼层
Regular Mappings and Locally Trivial FibrationsLet f: . → . be a continuous surjection and . a topological space. Then . is said to be a . with a ., if for each . ∈ ., there exists a neighborhood . = .(.) and a homeomorphism . such that . where . is the projection onto the first factor.
发表于 2025-3-30 00:51:26 | 显示全部楼层
Soft MappingsPełczyński [330] introduced the notion of Milyutin space and Dugundji space. Ščepin [370] proposed the notions of Milyutin mapping and Dugundji embedding and defined a . (.) . as a compactum which admits a Milyutin mapping (respectively, Dugundji embedding) from a power {0, 1}. onto . (respectively, from . into a power [0, 1].).
发表于 2025-3-30 06:57:13 | 显示全部楼层
Zero-Dimensional Selection Theoremof of Convex-valued theorem, but without any partitions of unity. As in the previous paragraph we begin (see Section 1) by the necessity conditions for solvability of the selection problem for an arbitrary closed-valued mapping. Our proof of Theorem (2.4) follows the original one [257]. The converse theorem (2.1) is a well-known folklore result.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 20:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表