找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Continuity, Integration and Fourier Theory; Adriaan C. Zaanen Textbook 1989 Springer-Verlag GmbH Germany, part of Springer Nature 1989 Ext

[复制链接]
楼主: 毛发
发表于 2025-3-23 10:04:19 | 显示全部楼层
https://doi.org/10.1007/978-3-319-69886-1riants, one for sums and one for integrals. The original variant for integrals of continuous functions or Riemann integrable functions was extended to measurable functions without additional difficulties.
发表于 2025-3-23 14:07:05 | 显示全部楼层
https://doi.org/10.1007/978-3-319-69886-1onotone sequences and on dominated convergence; the discrete parameter . in these theorems will be replaced by a continuous parameter ⋋. Let first ., be a .-finite measure in the (non-empty) point set ..
发表于 2025-3-23 21:04:26 | 显示全部楼层
https://doi.org/10.1007/978-3-642-73885-2Extension; Fourier series; Fourier transform; Hilbert space; differential equation; mathematical physics;
发表于 2025-3-23 23:38:20 | 显示全部楼层
978-3-540-50017-9Springer-Verlag GmbH Germany, part of Springer Nature 1989
发表于 2025-3-24 02:55:05 | 显示全部楼层
发表于 2025-3-24 08:46:25 | 显示全部楼层
Fourier Integral,onotone sequences and on dominated convergence; the discrete parameter . in these theorems will be replaced by a continuous parameter ⋋. Let first ., be a .-finite measure in the (non-empty) point set ..
发表于 2025-3-24 11:22:55 | 显示全部楼层
发表于 2025-3-24 15:47:22 | 显示全部楼层
The Space of Continuous Functions,y the set ℝ of all real numbers. The set ℝ. is a . with respect to the familiar laws of addition and multiplication by real constants, i.e., if . = (.,…, .), . = (.,…, .) and ⋋ is a real number, then . + . = (.+y.,…,. + .) and ⋋. (⋋.., ⋋x.).
发表于 2025-3-24 22:33:31 | 显示全部楼层
发表于 2025-3-25 03:05:11 | 显示全部楼层
Fourier Series of Summable Functions,d of c.(.) is also used. The sequence (.ˆ(.) : . = 0, ±1, ±2,…) is then denoted by .ˆ. For any . ∈ .(ℝ,.) there is an analogous notion, although now it is not a sequence of numbers but again a function defined on the whole of ℝ. Precisely formulated, for . ∈ .(ℝ,.) the . . of . is the function, defined for any . ∈ ℝ by
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 04:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表