找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Conjectures in Arithmetic Algebraic Geometry; A Survey Wilfred W. J. Hulsbergen Textbook 1994Latest edition Springer Fachmedien Wiesbaden 1

[复制链接]
楼主: Retina
发表于 2025-3-26 22:40:35 | 显示全部楼层
发表于 2025-3-27 01:36:56 | 显示全部楼层
0179-2156 mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet‘s L-functions to obtain results on the 978-3-663-09507-1978-3-663-09505-7Series ISSN 0179-2156
发表于 2025-3-27 07:34:45 | 显示全部楼层
‘Buses should … inspire writers’ithmetic intersection index on arithmetic varieties on Spec(ℤ), thus enlarging Arakelov’s construction of the Néron-Tate height pairing. This generalized height pairing was constructed by Beilinson and, independently, by Gillet and Soulé. In [Bl4] Bloch defines another height pairing for algebraic c
发表于 2025-3-27 12:16:03 | 显示全部楼层
发表于 2025-3-27 16:29:38 | 显示全部楼层
The Explanation of Network Form,w they give rise to some of the most intricate conjectures, the Birch & Swinnerton-Dyer Conjectures, which can be interpreted as the one-dimensional counterpart of Dedekind’s Class Number Formula. Also, more recently, a remarkable relation was found between elliptic curves and Fermat’s Last Theorem.
发表于 2025-3-27 18:50:06 | 显示全部楼层
发表于 2025-3-28 00:51:49 | 显示全部楼层
发表于 2025-3-28 05:55:39 | 显示全部楼层
The one-dimensional case: elliptic curves,w they give rise to some of the most intricate conjectures, the Birch & Swinnerton-Dyer Conjectures, which can be interpreted as the one-dimensional counterpart of Dedekind’s Class Number Formula. Also, more recently, a remarkable relation was found between elliptic curves and Fermat’s Last Theorem.
发表于 2025-3-28 07:49:47 | 显示全部楼层
发表于 2025-3-28 13:35:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 19:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表