找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Conformal Vector Fields, Ricci Solitons and Related Topics; Ramesh Sharma,Sharief Deshmukh Book 2024 The Editor(s) (if applicable) and The

[复制链接]
楼主: Coenzyme
发表于 2025-3-25 05:47:44 | 显示全部楼层
Gro Kvåle,Charlotte Kiland,Dag Olaf TorjesenThis chapter introduces some important space-times of general relativity, then describes their kinematics, Einstein’s field equations and energy conditions. Subsequently, it provides characterizations and classifications of space-times (in general, Lorentzian manifolds) that admit conformal (including Killing and homothetic) vector fields.
发表于 2025-3-25 10:15:31 | 显示全部楼层
发表于 2025-3-25 14:52:13 | 显示全部楼层
发表于 2025-3-25 17:59:27 | 显示全部楼层
Ronald Barnett Prof., Ph.D., D.Lit.This chapter starts with Yamabe problem, and then describes the Yamabe flow and Yamabe solitons. Finally, it provides characterizations of Yamabe almost solitons and also contact metrics as Yamabe solitons.
发表于 2025-3-25 22:54:13 | 显示全部楼层
Lie Group and Lie Derivative,This chapter begins with a brief review of Lie groups and their Lie algebras. Subsequently, it introduces the notion of the Lie derivative, its properties and closes with formulas showing the deviation from commutativity of Lie and covariant derivatives.
发表于 2025-3-26 03:10:23 | 显示全部楼层
Conformal Vector Fields,This chapter is devoted to conformal Killing vector fields, their integrability conditions, their zeros and Lichnerowicz conjecture on semi-Riemannian and CR manifolds.
发表于 2025-3-26 07:08:47 | 显示全部楼层
发表于 2025-3-26 08:53:10 | 显示全部楼层
发表于 2025-3-26 15:31:14 | 显示全部楼层
Ricci Solitons,This chapter provides the basic theory of Ricci flow, Ricci solitons, their examples, important properties and known results.
发表于 2025-3-26 18:16:26 | 显示全部楼层
Ricci Almost Solitons and Generalized Quasi-Einstein Manifolds,This chapter gives a coverage on Ricci almost soliton and its characterization and classification when it is compact, or contact metric. Next, it describes Generalized quasi-Einstein manifolds, its properties and classifications under various geometric conditions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 19:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表