找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Concentration and Gaussian Approximation for Randomized Sums; Sergey Bobkov,Gennadiy Chistyakov,Friedrich Götze Book 2023 The Editor(s) (i

[复制链接]
楼主: Lactase
发表于 2025-3-23 11:05:37 | 显示全部楼层
Coherency and area identification,ies of the involved entropy functional and then describe several important examples of measures satisfying logarithmic Sobolev inequalities. The remaining part of the chapter deals with various bounds that are valid in the presence of logarithmic Sobolev inequalities.
发表于 2025-3-23 14:55:02 | 显示全部楼层
发表于 2025-3-23 22:04:12 | 显示全部楼层
发表于 2025-3-24 00:04:16 | 显示全部楼层
发表于 2025-3-24 05:58:31 | 显示全部楼层
Logarithmic Sobolev Inequalitiesof functions, not necessarily under the Lipschitz hypothesis. To introduce this class of analytic inequalities, first we briefly mention basic properties of the involved entropy functional and then describe several important examples of measures satisfying logarithmic Sobolev inequalities. The remai
发表于 2025-3-24 09:36:00 | 显示全部楼层
发表于 2025-3-24 12:16:41 | 显示全部楼层
Second Order Spherical Concentrationith respect to growing dimension . in comparison with deviations that are valid for the entire class of Lipschitz functions. These conditions involve derivatives of . of the second order, which may be considered both in the spherical and Euclidean setup.
发表于 2025-3-24 16:29:28 | 显示全部楼层
https://doi.org/10.1007/978-3-030-01210-6This definition is frequently used in Convex Geometry, especially for random vectors which are uniformly distributed over a convex body (in which case the body is called isotropic, cf. [144]).
发表于 2025-3-24 22:44:56 | 显示全部楼层
Slow coherency and weak connections,In some problems/Sobolev-type inequalities, it makes sense to slightly modify the notion of the generalized modulus of gradient.
发表于 2025-3-25 00:59:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-20 15:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表