找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computing and Combinatorics; 9th Annual Internati Tandy Warnow,Binhai Zhu Conference proceedings 2003 Springer-Verlag Berlin Heidelberg 200

[复制链接]
查看: 51468|回复: 69
发表于 2025-3-21 18:54:23 | 显示全部楼层 |阅读模式
书目名称Computing and Combinatorics
副标题9th Annual Internati
编辑Tandy Warnow,Binhai Zhu
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computing and Combinatorics; 9th Annual Internati Tandy Warnow,Binhai Zhu Conference proceedings 2003 Springer-Verlag Berlin Heidelberg 200
出版日期Conference proceedings 2003
关键词Automat; algorithms; automata; complexity; complexity theory; computational geometry; distributed computin
版次1
doihttps://doi.org/10.1007/3-540-45071-8
isbn_softcover978-3-540-40534-4
isbn_ebook978-3-540-45071-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

书目名称Computing and Combinatorics影响因子(影响力)




书目名称Computing and Combinatorics影响因子(影响力)学科排名




书目名称Computing and Combinatorics网络公开度




书目名称Computing and Combinatorics网络公开度学科排名




书目名称Computing and Combinatorics被引频次




书目名称Computing and Combinatorics被引频次学科排名




书目名称Computing and Combinatorics年度引用




书目名称Computing and Combinatorics年度引用学科排名




书目名称Computing and Combinatorics读者反馈




书目名称Computing and Combinatorics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:41:40 | 显示全部楼层
发表于 2025-3-22 00:46:01 | 显示全部楼层
The Specker-Blatter Theorem Revisitedpecker and C. Blatter showed in 1981 that for every . N, .(.) satisfies a linear recurrence relation .over ℤ., and hence is ultimately periodic for each .. In this paper we show how the Specker-Blatter Theorem depends on the choice of constants and relations allowed in the definition of .. Among the main results we have the following:
发表于 2025-3-22 05:12:45 | 显示全部楼层
On the Divergence Bounded Computable Real Numbers for various functions .. We will show a simple sufficient condition for class of functions such that the corresponding .-bc real numbers form a field. Then we prove a hierarchy theorem for .-bc real numbers. Besides we compare the semi-computability and weak computability with the .-bounded computability for special functions ..
发表于 2025-3-22 11:11:16 | 显示全部楼层
The Structure and Number of Global Roundings of a Graphry . ∈ ... We conjecture that there are at most |.| + 1 global roundings for .., and also the set of global roundings is an affine independent set. We give several positive evidences for the conjecture.
发表于 2025-3-22 12:53:37 | 显示全部楼层
,Modellprozesse für Energieumwandlungen,ime to compute a (1 + .)-approximation with probability ≥ 1/2, and can be derandomized with an additional factor of .(..). Our technique is likely applicable to TSP problems of certain Jordan arcs and related problems.
发表于 2025-3-22 18:14:08 | 显示全部楼层
,Modellprozesse für Energieumwandlungen,eralization of adjacencies, and as a key feature of genome rearrangement theories. We also show that sets of conserved intervals have elegant nesting and chaining properties that allow the development of compact graphic representations, and linear time algorithms to manipulate them.
发表于 2025-3-22 23:35:05 | 显示全部楼层
,Modellprozesse für Stoffumwandlungen,gcd(. − 1, .) = 1 we have ..(.) = .(.. · (log.).). For char (.(.)) > 2 we prove that ..(.,4,.) = .(..), while for . = 2. we only have ..(. 4, .) = .(..). We can find matrices, fulfilling these lower bounds, in polynomial time. Our results extend and complement earlier results from .,., where the case . = 2 was considered.
发表于 2025-3-23 01:29:51 | 显示全部楼层
发表于 2025-3-23 09:37:49 | 显示全部楼层
Phasenzerfall und Phasengleichgewichte the binary reachability, allowing the automatic verification of many interesting properties of a .. The . model can be used to specify and verify various systems with unbounded queues, such as a real-time scheduler.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-6 08:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表